全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

在标准模型下格上基于身份的代理环签名
Scheme of identity-based proxy ring signature on lattice in the standard model

DOI: 10.6040/j.issn.1671-9352.2.2015.359

Keywords: ,代理环签名,强存在不可伪造性,标准模型,
lattices
,standard model,strong existential unforgeabilit,proxy ring signature

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 基于固定维数的格基委派算法和盆景树模型,在标准模型下构造了一个无可信中心的格上基于身份的代理环签名。其安全性是基于小整数解问题(small integer slution, SIS)的困难性。在标准模型下实现了代理签名者的完全匿名性和选择消息攻击下的强存在不可伪造性。与现有的基于格的代理环签名方案相比,新方案具有更高的安全性和计算效率。
Abstract: Based on the lattice basis delegation in fixed dimension and bonsai trees, a scheme of identity-based proxy ring signature on the lattice in the standar dmodel without a trusted center was proposed.The security of the scheme was based on the difficulty of small integer solution(SIS) problems on lattice, which realized full anonymity for the proxy signers and the strong existential unforgeability under chosen message attacks in the standard model. Compared with the existing scheme of identity-based proxy ring signature on lattice, our new scheme enjoys stronger security and higher efficiency

References

[1]  MAMBO M, USUDA K, OKAMOTO E. Proxy signatures for delegating signing operation[C]//Proceedings of the 3rd ACM Conference on Computer and Communications Security. New York:ACM, 1996:48-57.
[2]  RIVEST R L, SHAMIR A, TAUMAN Y. How to leak a secret[C]//Advances in Cryptology-ASIACRYPT 2001. Berlin Heidelberg:Springer, 2001:552-565.
[3]  AGRAWAL S, BONEH D, BOYEN X. Lattice basis delegation in fixed dimension and shorter-cipher text hierarchical IBE[C]//Advances in Cryptology-CRYPTO 2010. Berlin Heidelberg:Springer, 2010:98-115.
[4]  CASH D, HOFHEINZ D, KILTZ E, et al. Bonsai trees, or how to delegate a lattice basis[J]. Journal of Cryptology, 2012, 25(4):601-639.
[5]  张利利,马艳琴,卜春霞.标准模型下基于格的代理环签名方案[J].数学的实践与认识,2015,45(3):107-111. ZHANG Lili, MA Yanqin, BU Chunxia. Lattice-based proxy ring signature scheme in the standard model[J]. Mathematics in Practice and Theory, 2015, 45(3):107-111.
[6]  MAY A, SILVERMAN J H. Dimension reduction methods for convolution modular lattices[C]//Cryptography and Lattices. Berlin Heidelberg:Springer, 2001:110-125.
[7]  SHAMIR A. Identity-based cryptosystems and signature schemes[C]//Advances in Cryptology. Berlin Heidelberg:Springer, 1985:47-53.
[8]  ZHANG F, SAFAVI-NAINI R, LIN C Y. New proxy signature, proxy blind signature and proxy ring signature schemes from bilinear pairing[J]. IACR Cryptology ePrint Archive, 2003, 2003:104.
[9]  ALWEN J, PEIKERT C. Generating shorter bases for hard random lattices[J]. Theory of Computing Systems, 2011, 48(3):535-553.
[10]  GENTRY C, PEIKERT C, VAIKUNTANATHAN V. Trapdoors for hard lattices and new cryptographic constructions[C]//Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing. New York:ACM, 2008:197-206.
[11]  BOYEN X. Lattice mixing and vanishing trapdoors:a framework for fully secure short signatures and more[C]//Proceedings of ublic Key Cryptography-PKC 2010. Berlin Heidelberg:Springer, 2010:499-517.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133