|
- 2015
具有非交换Sylow子群的p2q3阶群的构造
|
Abstract:
摘要: 设p,q为奇素数,且p>q,而G是Sylow q-子群非交换的p2q3阶群。利用有限群的局部分析方法,对G进行了完全分类并获得了其全部构造。
Abstract: Let p, q be odd primes such that p>q, and G be groups of order p2q3 with non-Abelian Sylow q-subgroups. The isomorphic classification of G and their structures are determined with the help of local analysis of finite groups
[1] | 陈松良. 关于Sylow子群皆交换的p<sup>2</sup>q<sup>3</sup>阶群的构造[J]. 武汉大学学报:理学版,2013,59(3):295-300. CHEN Songliang. On the structures of groups of order p<sup>2</sup>q<sup>3</sup> with Abelian Sylow subgroups[J]. Journal of Wuhan University: Natural Science Edition, 2013, 59(3):295-300. |
[2] | 徐明曜. 有限群导引:上册[M]. 北京:科学出版社,1999. XU Mingyao. Introduction to finite group: Vol. 1[M]. Beijing: Science Press, 1999. |
[3] | KURZWEIL H, STELLMACHER B. The theory of finite groups[M]. New York: Springer-Verlag, 2004. |
[4] | HUPPERT B. Endliche gruppen I[M]. Berlin: Springer-Verlag, 1967. |
[5] | 陈松良. 论Sylow p-子群循环的p<sup>n</sup>q<sup>3</sup>阶群的构造[J]. 东北师范大学学报:自然科学版,2013,45(2):35-38. CHEN Songliang. On the structures of groups of order p<sup>n</sup>q<sup>3</sup> with cyclic Sylow p-subgroups[J]. Journal of Northeast Normal University: Natural Science Edition, 2013, 45(2): 35-38. |
[6] | ROBINSON D J S. A course in the theory of groups[M]// Graduate Texts in Mathematics 80. New York: Springer-Verlag, 1982. |