|
- 2015
光谱法研究nC60纳米颗粒与牛血红蛋白的相互作用
|
Abstract:
摘要: 用几种光谱方法研究了nC60纳米颗粒与牛血红蛋白之间的相互作用。用溶剂置换法制备nC60的水分散液,并用紫外-可见分光光度法、动态光散射和透射电子显微镜技术对nC60纳米颗粒进行表征;用紫外-可见分光光谱、荧光光谱、同步荧光光谱研究nC60与牛血红蛋白之间的作用。结果表明,nC60纳米颗粒对牛血红蛋白的紫外-可见吸收光谱有一定程度的改变作用;nC60可猝灭牛血红蛋白的内源荧光,且最大发射波长发生明显的蓝移现象;随着nC60浓度的增加,酪氨酸残基和色氨酸残基的同步荧光强度降低,其中酪氨酸残基峰位发生蓝移,而色氨酸残基峰位基本保持不变。研究表明nC60与牛血红蛋白之间存在一定的相互作用;nC60可引起牛血红蛋白构象的改变,酪氨酸残基所处微环境的极性减小,nC60与牛血红蛋白的作用位置更接近酪氨酸残基。
Abstract: Several spectroscopic methods were used to study the interaction between nC60 nanoparticles and bovine hemoglobin. The nC60 nanoparticles dispersion in water was prepared by solvent replacement method and characterized using UV-Vis spectrometry, dynamic light scattering and transmission electron microscopy. The interaction between nC60 and bovine hemoglobin was investigated by UV-Vis spectrometry, fluorescence spectroscopy and synchronous fluorescence spectroscopy. The result indicated that the UV-Visible absorption spectrum of bovine hemoglobin was changed to some extent by nC60 nanoparticles. The intrinsic fluorescence of bovine hemoglobin could be quenched by nC60 and the maximum emission wavelength showed obvious blue-shift. With the increasing concentrations of nC60, the synchronous fluorescence intensity of tyrosine and tryptophan residues decreased gradually, and the fluorescence peak of tyrosine residues exhibited a blue shift while the fluorescence peak of tryptophan residues remained unchanged. The research showed that the binding of nC60to bovine hemoglobin could cause the conformation change of bovine hemoglobin. The microenvironment polarity around tyrosine residues decreased, indicating the binding site of nC60 to bovine hemoglobin was located near tyrosine residues
[1] | 韦静, 沈星灿, 梁宏, 等. 牛血红蛋白与纳米雄黄相互作用的光谱研究[J]. 光谱学与光谱分析, 2008, 28(4):852-855.WEI Jing, SHEN Xingcan, LIANG Hong, et al. Spectroscopic study on the interaction between Bovine hemoglobin and nano-realgar[J]. Spectroscopy and Spectral Analysis, 2008, 28(4):852-855. |
[2] | KANE R S 1, STROOCK A D. Nanobiotechnology: protein-nanomaterial interactions[J]. Biotechnol Prog, 2007, 23(2):316-319. |
[3] | PORTER A E, GASS M, MULLER K, et al. Visualizing the uptake of C<sub>60</sub> to the cytoplasm and nucleus of human monocyte-derived macrophage cells using energy-filtered transmission electron microscopy and electron tomography[J]. Environ Sci Technol, 2007, 41(8):3012-3017. |
[4] | SONG Maoyong, YUAN Shaopeng, YIN Junfa, et al. Size-dependent toxicity of nano-C<sub>60</sub> aggregates: more sensitive indication by apoptosis-related Bax translocation in cultured human cells[J]. Environ Sci Technol, 2012, 46(6):3457-3464. |
[5] | DEGUCHI S, YAMAZAKI T, MUKAI S, et al. Stabilization of C<sub>60</sub> nanoparticles by protein adsorption and its implications for toxicity studies[J]. Chem Res Toxicol, 2007, 20(6):854-858. |
[6] | FRIEDMAN S H, DECAMP D L, SIJBESMA R P, et al. Inhibition of the HIV-1 protease by fullerene derivatives: Model building studies and experimental verification[J]. Am Chem Soc, 1993, 115(15):6505-6509. |
[7] | 周秋华, 王彦卿, 张红梅, 等. 单宁酸与牛血红蛋白相互作用的光谱研究[J]. 化学研究与应用, 2008, 07(7):816-820. ZHOU Qiuhua, WANG Yanqing, ZHANG Hongmei. Spectroscopic study on the interaction between Tannic acid and bovine hemoglobin[J]. Chemical Research and Application, 2008, 07(7):816-820. |
[8] | CAVA? T, CINKILI? N, VATAN O, et al. Effects of fullerenol nanoparticles on acetamiprid induced cytoxicity and genotoxicity in cultured human lung fibroblasts[J]. Pestic Biochem Physiol, 2014, 114:1-7. |
[9] | MAMONTOVA T V, MYKYTIUK M V, BOBROVA N O. The anti-inflammatory effect of fullerene C<sub>60</sub> on adjuvant arthritis in rats[J]. Fiziol Zh, 2013, 59(3):102-110. |
[10] | 康峰, 卢胜明, 胡建武. 富勒烯及其衍生物动物实验的研究进展[J]. 实验动物学, 2010, 27(6):48-50.KANG Feng, LU Shengming, HU Jianwu. The progress of fullerene and its derivatives’ animal experiment research[J]. Laboratory Animal Science, 2010, 27(6):48-50. |
[11] | WU Hai, LIN Lina, WANG Po, et al. Solubilization of pristine fullerene by the unfolding mechanism of bovine serum albumin for cytotoxic application[J]. Chem Commun (Camb), 2011, 47(38):10659-10661. |
[12] | ROZHKOV S P, GORYUNOV A S, SUKHANOVA G A, et al. Protein interaction with hydrated C<sub>60</sub> fullerene in aqueous solutions[J]. Biochem Biophys Res Commun, 2003, 303(2):562-566. |
[13] | 刘淑芳, 尹俊发, 宋茂勇, 等. 血液运输蛋白与C<sub>60</sub>富勒烯的相互作用[C]// 中国化学会第26届学术年会环境化学分会场论文集.天津:南开大学, 2008. |
[14] | 陈代武, 谢青季, 苏育华, 等. 荧光光谱法研究金纳米粒子和槲皮素及牛血红蛋白的相互作用[J]. 分析科学学报, 2008, 24(3):259-264. |
[15] | 刘元方. 纳米材料生物效应研究和安全性评价前沿[J]. 自然杂志, 2011, 33(4):192-197.LIU Yuanfang. Frontier of nano-materials biological effect research and safety evaluation[J]. Chinese Journal of Nature, 2011, 33(4):192-197. |
[16] | OBERD?RSTER E. Manufactured nanomaterials (Fuller-enes, C<sub>60</sub>) induce oxidative stress in the brain of juvenile largemouth bass[J]. Environ Health Perspect, 2004, 112(10):1058-1062. |