|
- 2015
一类二阶非线性差分方程同宿解的多解性
|
Abstract:
摘要: 研究了一类二阶非线性差分方程同宿解的存在性。利用临界点理论, 在满足更一般的超线性条件下, 证明了该方程同宿解的多解性。
Abstract: We study the existence of homoclinic solutions for a class of second order nonlinear difference equations. Under more general superlinear conditions, we prove the multiplicity results of the equations by using critical point theory
[1] | GUO Zhiming, YU Jianshe. The existence of periodic and subharmonic solutions of subquadratic second order difference equations[J]. J Lond Math Soc, 2003, 68(2):419-430. |
[2] | GUO Zhiming, YU Jianshe. Existence of periodic and subharmonic solutions for second-order superlinear difference equations[J]. Sci China Ser A, 2003, 46(4):506-515. |
[3] | ZHOU Zhan, YU Jianshe, GUO Zhiming. Periodic solutions of higher-dimensional discrete systems[J]. Proc Roy Soc Edinburgh Sect A, 2004, 134(5):1013-1022. |
[4] | MAI Ali, ZHOU Zhan. Discrete solitons for periodic discrete nonlinear Schrdinger equations[J]. Appl Math Comput, 2013, 222:34-41. |
[5] | MA Manjun, GUO Zhiming. Homoclinic orbits for second order self-adjoint difference equations[J]. J Math Anal Appl, 2006, 323(1):513-521. |
[6] | MAI Ali, ZHOU Zhan. Ground state solutions for the periodic discrete nonlinear Schrdinger equations with superlinear nonlinearities[J]. Abstr Appl Anal, 2013, 2013: 1-11. |
[7] | SUN Guowei. On Standing Wave solutions for discrete nonlinear Schrdinger equations[J]. Abstr Appl Anal, 2013, 2013: 1-6. |
[8] | RABINOWITZ P. Minimax methods in critical point theory with applications to differential equations[M]//CBMS Regional Conference Series in Mathematics vol 65. Providence: American Mathematical Society, 1986. |
[9] | MA Defang, ZHOU Zhan. Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials[J]. Abstra Appl Anal, 2012, 2012: 1-15. |
[10] | IANNIZZOTTO A, TERSIAN S. Multiple homoclinic orbits for the discrete p-Laplacian via critical point theory[J]. J Math Anal Appl, 2013, 403(1):173-182. |