|
- 2015
Gorenstein弱平坦模
|
Abstract:
摘要: 引入了Gorenstein弱平坦模,给出了Gorenstein弱平坦模的一些性质。证明了Gorenstein弱平坦模类关于直积封闭,Gorenstein弱平坦模类是投射可解类当且仅当它关于扩张封闭,并且证明了每一个模都具有Gorenstein弱平坦预覆盖。
Abstract: Gorenstein weak flat modules are introduced and some properties of such modules are given. It is proved that the class of Gorenstein weak flat modules is closed under direct products, and that the class of Gorenstein weak flat modules is projectively resolving if and only if it is closed under extensions. Moreover, it is proved that every module has a Gorenstein weak flat precover
[1] | ROTMAN J J. An introduction to Homological algebra[M]. New York: Academic Press, 1979. |
[2] | ENOCHS E E, JENDA O M G, TORRECILLAS B. Gorenstein flat modules[J]. Journal of Nanjing University: Natural Science, 1993, 10(1):1-9. |
[3] | ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220(1):611-633. |
[4] | BENNIS D. Rings over which the class of Gorenstein flat modules is closed under extensions[J]. Comm Algebra, 2009, 37:855-868. |
[5] | GAO Zenghui, WANG Fanggui. All Gorenstein hereditary rings are coherent[J]. J Algebra Appl, 2014, 13(4):1350140.1-1350140.5. |
[6] | GAO Zenghui, WANG Fanggui. Weak injective and weak flat modules[J]. Comm Algebra, 2015, 43(9):3857-3868. |
[7] | GARCíA ROZAS J R. Covers and envelope in the category of complexes of modules[M]. New York: CRC Press, 1999. |
[8] | COLBY R R. Rings which have flat injective modules[J]. J Algebra, 1975, 35:239-252. |
[9] | BENNIS D. Weak Gorenstein global dimension[J]. Int Electron J Algebra, 2010, 8:140-152. |
[10] | GAO Zenghui. Weak Gorenstein projective, injective and flat modules[J]. J Algebra Appl, 2013, 12(2):1250165.1-1250165.15. |
[11] | ENOCHS E E, JENDA O M G. Relative homological algebra[M].Berlin:Walter de Gruyer, 2000. |
[12] | ENOCHS E E, LóPEZ-RAMOS J A. Kaplansky classes[J]. Rend Sem Mat Univ Padova, 2002, 107:67-79. |
[13] | HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189(1):167-193. |
[14] | GILLESPIE J. The flat model structure on Ch(<em>R</em>)[J]. Trans Amer Math Soc, 2004, 356:3369-3390. |
[15] | WANG Z P, LIU Z K. Complete cotorsion pairs in the category of complexes[J]. Turk J Math, 2013, 37:852-862. |
[16] | ALDRICH S T, ENOCHS E E, GARCA ROZAS J R, et al. Covers and envelopes in Grothendieck categories: flat covers of complexes with applications[J]. J Algebra, 2001, 243:615-630. |