全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

k-连通图中最长圈上可收缩边的数目
On the number of contractible edges of longest cycles in k-connected graphs

DOI: 10.6040/j.issn.1671-9352.0.2015.072

Keywords: 最长圈,可收缩边,k-连通图,哈密顿圈,
contractible edge
,hamiltonian cycle,k-connected graph,longest cycle

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 给出了k-连通图中最长圈上的可收缩边的数目,得到如下结果:任意断片的阶至少为「k/2+1 的k-连通图中最长圈上至少有3 条可收缩边;更进一步,若该k-连通图中存在哈密顿圈,则哈密顿圈上至少有6 条可收缩边。
Abstract: The number of contractible edges of longest cycles in k-connected graphs is given. The conclusions are that if every fragment of a k-connected graph has an order at least 「k/2+1,then there exist at least three contractible edges on the longest cycle of this graph. Furthermore, if this graph has a hamiltonian cycle, then there exist at least six contractible edges on the hamiltonian cycle

References

[1]  KRISELL M. A survey on contractible edges in graph of a prescribed vertex connectivity[J]. Graphs and Combinatorics, 2002, 18(1):1-30.
[2]  BONDY J A, MURTY U S R. Graph theory with applications[M]. London: The Macmillan Press Ltd, 1976.
[3]  TUTTE W T. A theory of 3-connected graphs[J]. Indag Math, 1961, 23:441-455.
[4]  THOMASSEN C. Non-separating cycles in <em>k</em>-connected graphs[J]. Graph Theory, 1981, 5:351-354.
[5]  KRIESELL M. A degree sum condition for the existence of a contractible edge in a <em>k</em>-connected graph[J]. Comb Theory Ser, 2001, B82:81-101.
[6]  EGAWA Y. Contractible edges in n-connected graphs with minimum degree greater than or equal to[5<em>n</em>/4][J]. Graphs and Combinatorics, 1990, 7:15-21.
[7]  杨朝霞. 某些5-连通图中最长圈上的可收缩边[J].山东大学学报:理学版,2008, 43(6):12-14. YANG Zhaoxia. The contractible edges of the longest cycle in some 5-connected graphs[J]. Journal of Shandong University: Naturnal Science, 2008, 43(6):12-14.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133