全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

bent-negabent函数的构造
Constructions of bent-negabent Boolean functions

DOI: 10.6040/j.issn.1671-9352.0.2014.409

Keywords: negabent函数,bent函数,布尔函数,
negabent function
,bent function,Boolean function

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 给出了一种新的negabent函数的构造, 基于此构造和已有的bent函数的构造, 得到了一种bent-negabent函数的构造;分析了一类由4个函数级联所得函数的性质, 给出了这类函数为negabent函数的必要条件;给出了bent-negabent函数的一种直和构造。
Abstract: A new method to construct negabent function was provided. Based on it, a construction of bent-negabent function was obtained. And then, the special Boolean function by concatenation was investigated. A necessary conditions for this Boolean function to be a negabent function was presented. Finally, the direct sum construction of bent-negabent function is given

References

[1]  STANICA P, GANGOPADHYAY S, CHATURVEDI A, et al. Investigations on bent and negabent functions via the nega-Hadamard transforms[J]. IEEE Transformations on Information Theory, 2012, 58(6):4064-4072.
[2]  SU Wei, POTT A, TANG Xiaohu. Characterization of negabent functions and construction of bent-negabent functions with maximum algebraic degree[J]. IEEE Transformations on Information Theory, 2013, 59(6):3387-3395.
[3]  卓泽朋, 崇金凤, 魏仕民. Nega-Hadamard变换和negabent函数[J]. 山东大学学报:理学版,2013, 48(7):29-32.ZHUO Zepeng, CHONG Jinfeng, WEI Shimin. On Nega-Hadamard transform and negabent functions [J]. Journal of Shandong University: Natural Science, 2013, 48(7):29-32.
[4]  CLIMENT J, GARCIA F, REQUENA V. On the construction of bent functions of <em>n</em>+2 variables from bent function of n variables[J]. Advances in Mathematics of Communications, 2008, 2(4):421-431.
[5]  ROTHAUS O S. On bent functions[J]. Journal of Combinatorial Theory, 1976, 20:300-305.
[6]  PARKERMG, POTT A. On Boolean functions which are bent and negabent[C]// Proceedings of International Workshop on Sequences, Subsequences, and Consequences. Berlin: Springer-Verlag, 2007: 9-23.
[7]  CARLET C. Two new classes of bent functions[C]// Proceedings of EUROCRYPT 1993. Berlin: Springer-Verlag, 1994, 765:77-101.
[8]  CARLET C. On the secondary constructions of resilient and bent functions[J]. Progress in Computer Science and Applied logic, 2004, 23:3-28
[9]  SARKAR S. Characterizing negabent Boolean functions over finite fields[C]// Proceedings of the 7th International Conference Sequences and Their Applications(SETA 2012). Berlin: Springer-Verlag, 2012: 77-88.
[10]  SCHMIDT K U, PARKER M G, POTT A. Negabent functions in the Maiorana-McFarland class[C]// Proceedings of the 5th International Conference on Sequences and Their Applications (SETA 2008). Berlin: Springer-Verlag, 2008: 390-402.
[11]  SARKAR S. On the symmetric negabent Boolean functions[C]// Proceedings of the 10th International Conference on Cryptology in India. Berlin: Springer-Verlag, 2009: 136-143.
[12]  STANICA P, GANGOPADHYAY S, CHATURVEDI A, et al. Nega-Hadamard transform, bent and negabent functions[C]// Proceedings of the 6th International Conference on Sequences and Their Applications. Heidelberg: Springer-Verlag, 2010: 359-372.
[13]  GANGOPADHYAY S, CHATURVEDI A. A new class of bent-negabent Boolean functions[EB/OL]. [2014-07-025].http://eprint.iacr.org/2010/597.pdf.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133