|
- 2015
bent-negabent函数的构造
|
Abstract:
摘要: 给出了一种新的negabent函数的构造, 基于此构造和已有的bent函数的构造, 得到了一种bent-negabent函数的构造;分析了一类由4个函数级联所得函数的性质, 给出了这类函数为negabent函数的必要条件;给出了bent-negabent函数的一种直和构造。
Abstract: A new method to construct negabent function was provided. Based on it, a construction of bent-negabent function was obtained. And then, the special Boolean function by concatenation was investigated. A necessary conditions for this Boolean function to be a negabent function was presented. Finally, the direct sum construction of bent-negabent function is given
[1] | STANICA P, GANGOPADHYAY S, CHATURVEDI A, et al. Investigations on bent and negabent functions via the nega-Hadamard transforms[J]. IEEE Transformations on Information Theory, 2012, 58(6):4064-4072. |
[2] | SU Wei, POTT A, TANG Xiaohu. Characterization of negabent functions and construction of bent-negabent functions with maximum algebraic degree[J]. IEEE Transformations on Information Theory, 2013, 59(6):3387-3395. |
[3] | 卓泽朋, 崇金凤, 魏仕民. Nega-Hadamard变换和negabent函数[J]. 山东大学学报:理学版,2013, 48(7):29-32.ZHUO Zepeng, CHONG Jinfeng, WEI Shimin. On Nega-Hadamard transform and negabent functions [J]. Journal of Shandong University: Natural Science, 2013, 48(7):29-32. |
[4] | CLIMENT J, GARCIA F, REQUENA V. On the construction of bent functions of <em>n</em>+2 variables from bent function of n variables[J]. Advances in Mathematics of Communications, 2008, 2(4):421-431. |
[5] | ROTHAUS O S. On bent functions[J]. Journal of Combinatorial Theory, 1976, 20:300-305. |
[6] | PARKERMG, POTT A. On Boolean functions which are bent and negabent[C]// Proceedings of International Workshop on Sequences, Subsequences, and Consequences. Berlin: Springer-Verlag, 2007: 9-23. |
[7] | CARLET C. Two new classes of bent functions[C]// Proceedings of EUROCRYPT 1993. Berlin: Springer-Verlag, 1994, 765:77-101. |
[8] | CARLET C. On the secondary constructions of resilient and bent functions[J]. Progress in Computer Science and Applied logic, 2004, 23:3-28 |
[9] | SARKAR S. Characterizing negabent Boolean functions over finite fields[C]// Proceedings of the 7th International Conference Sequences and Their Applications(SETA 2012). Berlin: Springer-Verlag, 2012: 77-88. |
[10] | SCHMIDT K U, PARKER M G, POTT A. Negabent functions in the Maiorana-McFarland class[C]// Proceedings of the 5th International Conference on Sequences and Their Applications (SETA 2008). Berlin: Springer-Verlag, 2008: 390-402. |
[11] | SARKAR S. On the symmetric negabent Boolean functions[C]// Proceedings of the 10th International Conference on Cryptology in India. Berlin: Springer-Verlag, 2009: 136-143. |
[12] | STANICA P, GANGOPADHYAY S, CHATURVEDI A, et al. Nega-Hadamard transform, bent and negabent functions[C]// Proceedings of the 6th International Conference on Sequences and Their Applications. Heidelberg: Springer-Verlag, 2010: 359-372. |
[13] | GANGOPADHYAY S, CHATURVEDI A. A new class of bent-negabent Boolean functions[EB/OL]. [2014-07-025].http://eprint.iacr.org/2010/597.pdf. |