|
- 2018
基于事件点联合分布的自激滤过泊松过程的低阶矩
|
Abstract:
摘要: 利用事件发生点的联合分布给出了自激发射噪声过程的第一、二阶矩,在此基础上得到了自激滤过的泊松过程的第一、二阶矩的简洁证明。
Abstract: Based on the joint distribution of event points, the first and second order moments of the self-excited shot noise process are given. On this basis, the first and second order moments of Poisson process of self-excited filtering are obtained
[1] | 马明.自激滤过的泊松过程[J].吉林大学学报(理学版),2009,47(4):711-716. MA Ming. Self-exciting filtered Poisson processes[J]. Journal of Jilin University(Science Edition), 2009, 47(4): 711-716. |
[2] | 史爱玲,马明,郑莹.齐次泊松响应的客户寿命值及性质[J].山东大学学报(理学版),2014,49(3):96-100. SHI Ailing, MA Ming, ZHENG Ying. Customer lifetime value and property with homogeneous Poisson response [J]. Journal of Shandong University(Natural Science), 2014, 49(3): 96-100. |
[3] | MA Ming, LI Zehui. Life behavior of censored <i>δ</i>-shock model[J]. Indian Journal of Pure and Applied Mathematics, 2010, 41(2): 401-420. |
[4] | 郑莹,马明.自激滤过的泊松过程的二阶矩[J].山东大学学报(理学版),2013,48(9):35-39,45. ZHENG Ying, MA Ming. Second moment of self-exciting filter Poisson process[J].Journal of Shandong University(Natural Science), 2013, 48(9): 35-39, 45. |
[5] | 马明.<i>δ</i>冲击模型寿命分布的积分计算及<i>M</i>函数的性质[J].山东大学学报(理学版),2008,43(12):15-19. MA Ming. Computation of the integral of lifetime distribution in the <i>δ</i> shock model and the properties of the <i>M</i> function[J].Journal of Shandong University(Natural Science), 2008, 43(12):15-19. |
[6] | 邓永录,梁之舜.随机点过程及其应用[M].北京:科学出版社,1992. DENG Yonglu, LIANG Zhishun. Stochastic point process and its application [M]. Beijing: Science Press, 1992. |
[7] | 樊平毅.随机过程理论与应用[M].北京:清华大学出版社,2005. FAN Pingyi. Stochastic process theory and application[M]. Beijing: Tsinghua University Press, 2005. |
[8] | 郑莹,马明. <i>M</i>函数的极限性质[J].经济数学,2014,31(3):92-93. ZHENG Ying, MA Ming. The limit properties of <i>M</i> function[J]. Journal of Quantitative Economics, 2014, 31(3): 92-93. |