全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

软关联环
Soft incidence ring

DOI: 10.6040/j.issn.1671-9352.0.2017.283

Keywords: 软集,关联代数,软关联环,
soft set
,incidence algebra,soft incidence ring

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 将关联代数与软集相结合,提出新概念软关联环并研究它的基本代数性质;证明了两个软关联环同构当且仅当它们的基础软集同构,以及软关联环反同构等相关定理。
Abstract: The incidence ring will be associated to soft set to form a new concept, that is a soft incidence ring, whose basic algebraic properties are studied. Its shown that two soft incidence rings are isomorphic if and only if their basis of soft sets are isomorphic, soft incidence rings’ anti-isomorphism theorem and other related results are proved

References

[1]  ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2]  MOLODTSOV D A. Soft set theory-first results[J]. Computers and Mathematics with Applications, 1999, 37(4-5):19-31.
[3]  MAJI P K, BISWAS R, ROY A R. Soft set theory[J]. Computers and Mathematics with Applications, 2003, 45(4):555-562.
[4]  IRFAN ALI M, FENG Feng, LIU Xiaoyan, et al. On some new operations in soft set theory[J]. Computers and Mathematics with Applications, 2009, 57(9):1547-1553.
[5]  MAJI P K, BISWAS R, ROY A R. Fuzzy soft sets[J]. Journal of Fuzzy Mathematics, 2001, 9(3):589-602.
[6]  MAJI P K, ROY A R. A fuzzy soft set theoretic approach to decision making problems[J]. Journal of Computational and Applied Mathematics, 2007, 203(2):412-418.
[7]  KONG Z, GAO L Q, WANG L F. Comment on a fuzzy soft set theoretic approach to decision making problems[J]. Journal of Computational and Applied Mathematics, 2009, 223(2):540-542.
[8]  FENG F, JUN Y B, LIU X. An adjustable approach to fuzzy soft set based decision making[J]. Journal of Computational and Applied Mathematics, 2010, 234(1):10-20.
[9]  ROTA G C. On the foundations of combinatorial theory I. theory of M?bius functions[J]. Probability Theory and Related Fields, 1964, 2(4):340-368.
[10]  REINER VICTO, STAMATE DI. Koszul incidence algebras, affine semigroups, and Stanley-Reisner ideals[J]. Advances in Mathematics, 2010, 224(6):2312-2345.
[11]  MAGNIFO F, ROSENBERG I G. Generalization of convolution and incidence algebras[J]. European Journal of Combinatorics, 2014, 37(3):100-114.
[12]  FENG F, LI Y, LEOREANU-FOTEA V. Application of level soft sets in decision making based on interval-valued fuzzy soft sets[J]. Computers and Mathematics with Applications, 2010, 60(6):1756-1767.
[13]  MAJI P K, BISWAS R, ROY A R. An application of soft sets in a decision making problem[J]. Computers and Mathematics with Applications, 2002, 44(8):1077-1083.
[14]  JUN Y B. Soft BCK/BCI-algebras[J]. Computers and Mathematics with Applications, 2008, 56(5):1408-1413.
[15]  Hac? Akta, Naim ?agman. Soft sets and soft groups[J]. Information Sciences, 2007, 177(13):2726-2735.
[16]  宋焕新, 袁志玲, 孔祥智. 软交Clifford半群[J]. 模糊系统与数学, 2016, 30(1):28-32. SONG Huanxin, YUAN Zhiling, KONG Xiangzhi. Soft intersection Clifford semigroup[J]. Fuzzy systems and Mathematics, 2016, 30(1):28-32.
[17]  STANLEY R P. Structure of incidence algebras and their automorphism groups[J]. Bull Amer Math Soc, 1970, 76(6):1236-1239.
[18]  GONG K, WANG P, PENG Y. Fault-tolerant enhanced bijective soft set with applications[J]. Applied Soft Computing, 2016, 54:431-439.
[19]  SPIEGEL E. Involutions in incidence algebras[J]. Linear Algebra and its Applications, 2005, 405(1):155-162.
[20]  JOSE CARLOS R Alcantud. A novel algorithm for fuzzy soft set based decision making from multiobserver input-parameter data set[J]. Information Fusion, 2016, 29(C):142-148.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133