|
- 2016
所有τ-刚性模是投射模的代数
|
Abstract:
摘要: 给出了某类特殊的代数上利用单模构造不可分解τ-刚性模的方法。并由此得出所有τ-刚性模是投射模的根平方为零的本原的不可分解代数是局部代数。
Abstract: For a special class of algebras, a method on constructing indecomposable τ-rigid modules from simple modules is given. As a result, it is proved that a basic and connected algebra A with radical square zero is local if all τ-rigid A-modules are projective
[1] | ADACHI T, IYAMA O, REITEN I. <i>τ</i>-tilting theory[J]. Composito Mathematica, 2014, 150(3):415-452. |
[2] | AIHARA T, IYAMA O. Silting mutation in triangulated categories[J]. Journal of the London Mathematical Society, 2012, 85(3):633-668. |
[3] | IYAMA O, YOSHINO Y. Mutations in triangulated categories and rigid Cohen-Macaulay modules[J]. Inventiones Mathematicae, 2008, 172:117-168. |
[4] | AUSLANDER M, PLATZECK M I, REITEN I. Coxeter functions without diagrams[J]. Transactions of the American Mathematical Society, 1979, 250:1-11. |
[5] | BRENNER S, BUTER M C R. Generalization of Bernstein-Gelfand-Ponomarev reflection functors[J]. Lecture Notes in Mathematics, 1980, 839:103-169. |
[6] | AUSLANDER M, REITEN I, SMOLΦ S O. Representation theory of artin algebras[M]. Cambridge: Cambridge University Press, 1997. |
[7] | CHEN Xiaowu. Algebras with radical square zero are either self-injective or CM-free[J]. Proceedings of the American Mathematical Society, 2012, 140:93-98. |
[8] | HAPPEL D, RINGEL C M. Tilted algebras[J]. Transactions of the American Mathematical Society, 1982, 274:399-443. |
[9] | MIZUNO Y. Classifying <i>τ</i>-tilting modules over preprojective algebras of Dynkin type[J]. Mathematische Zeitschrift, 2014, 277(3):665-690. |
[10] | WEI Jiaqun. <i>τ</i>-tilting theory and *-modules[J]. J Algebra, 2014, 414:1-5. |
[11] | 张孝金, 张太忠. 根平方为零的Nakayama代数上的<i>τ</i>-倾斜模[J]. 南京大学学报(数学半年刊),2013, 30(2):247-251. ZHANG Xiaojin, ZHANG Taizhong. <i>τ</i>-tilting modules for Nakayama algebras with radical square zero[J]. Journal of Nanjing University Mathematical Biquarterly, 2013, 30(2):247-251. |