|
- 2016
集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的不可分解元
|
Abstract:
摘要: 设Λ是任意的非空集合,Γ是集合Λ上的半格,PΓ(Λ×Λ)是集合Λ上的半格Γ确定的二元关系半群。得到了半群PΓ(Λ×Λ)的不可分解元的一个充分必要条件,并且在一定条件下找到了一类不可分解元。
Abstract: Let Λ be an arbitrary nonempty set, and Γ be a semilattice on the set Λ. Let PΓ(Λ×Λ)is a semigroup of binary relations determined by the semilattice Γ on the set Λ. In the semigroup PΓ(Λ×Λ), a necessary and sufficient condition of non-solvable elements is obtained,and a class of non-solvable elements is found under certain conditions
[1] | PLEMMONS R J, WEST M T. On the semigroup of binary relations[J]. Pacific J Math, 1970, 35:743-753. |
[2] | PLEMMONS R J, SCHEIN B M. Groups of binary relations[J]. Semigroup Forum, 1970, 1(1):267-271. |
[3] | SCHWARZ S. On idempotent binary relations on a finite set[J]. Czech J Math, 1970, 20:696-702. |
[4] | CHASE K. New semigroups of binary relations[J]. Semigroup Forum, 1979, 18(1):79-82. |
[5] | CHASE K. Sandwish semigroups of binary relations[J]. Discrete Math, 1979, 28:231-236. |
[6] | 林屏峰. 集合<i>I</i>到集合<i>Λ</i>上的二元关系半群<i>P<sub>θ</sub>(I×Λ)</i>的生成集和Green-关系[J].西南民族大学学报(自然科学版), 2010,36(1):44-49. LIN Pingfeng. Generating sets and Greens relations for semigroup <i>P<sub>θ</sub>(I×Λ)</i>of all binary relations form a set <i>I</i> to a set <i>Λ</i>[J]. Journal of Southwest University for Nationlities(Natural Science), 2010, 36(1):44-49. |
[7] | 林屏峰. 集合<i>Λ</i>上的半格<i>Γ</i>确定的二元关系半群<i>P<sub>Γ</sub>(Λ×Λ)</i>的基本性质[J].西南民族大学学报(自然科学版), 2012,38(4):529-532. LIN Pingfeng. Some properties of semigroup P<i><sub>Γ</sub>(Λ×Λ)</i> binary relations determined by the semilattice <i>Γ</i> on the set <i>Λ</i>[J]. Journal of Southwest University for Nationlities(Natural Science), 2012, 38(4):529-532. |
[8] | BIRKHOFF G. Lattice theory[M]. New York: American Mathematical Society, 1967. |
[9] | 林屏峰,曾伟,曾纯一. 集合<i>Λ</i>上的半格<i>Γ</i>确定的二元关系半群<i>P<sub>Γ</sub>(Λ×Λ)</i>的幂等元[J].山东大学学报(理学版), 2013,48(8):36-40. LIN Pingfeng, ZENG Wei, ZENG Chunyi. Idempotents of semigroup P<sub>Γ</sub>(Λ×Λ)of binary relations determined by the semilattice <i>Γ</i> on the set <i>Λ</i>[J]. Journal of Shandong University(Natural Science), 2013, 48(8):36-40. |
[10] | KONIECZNY J. The semigroup generated by regular Boolean matrices[J]. South Asian Bull of Math, 2002, 25:627-641. |