|
- 2017
最大度为7的平面图全染色
|
Abstract:
摘要: 假设图G是最大度为7的平面图。 利用权转移的方法证明了,如果图G中弦5-圈和弦6-圈不相邻,那么图G的全色数是Δ+1。
Abstract: Let G be a planar graph with maximum degree Δ≥7. It is proved that if chordal 5-cycles of G are not adjacent to chordal 6-cycles, then its total chromatic number is Δ+1 by the discharging method
[1] | KOSTOCHKA A V. The total chromatic number of any multigraph with maximum degree five is at most seven[J]. Discrete Mathematics, 1996, 162:199-214. |
[2] | WANG Huijuan, LUO Zhaoyang, LIU Bin, et al. A note on the minimum total coloring of planar graphs[J]. Acta Mathematic Sinica, 2016, 32(8):967-974. |
[3] | BORODIN O V. On the total coloring of planar graphs[J]. Journal Für Die Reine Und Angewandte Mathematik, 1989, 394:180-185. |
[4] | BONDY J A, MURTY U S R. Graph theory with applications[M]. London: MacMillan, 1976. |
[5] | BEHZAD M. Graphs and their chromatic numbers[D]. Michigan: Michigan State University, 1965. |
[6] | KOWALIK L, SERENI J S, SKREKOVSKI R. Total-coloring of plane graphs with maximum degree nine[J]. Siam Journal on Discrete Mathematics, 2008, 22(4):1462-1479. |
[7] | VIZING V G. Some unsolved problems in graph theory[J]. Uspekhi Mat Nauk, 1968, 23(6):117-134. |
[8] | 王应前, 孙强, 陶鑫, 等. 最大度为7且不含带弦5-圈的平面图是8-全可染的[J]. 中国科学, 2011, 41(1):95-104. WANG Yingqian, SUN Qiang, TAO Xin, et al. Planar graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable[J]. Scientia Sinica, 2011, 41(1):95-104. |
[9] | CHANG G J, HOU Jianfeng, ROUSSEL N. Local condition for planar graphs of maximum degree 7 to be 8-totally colorable[J]. Discrete Applied Mathematics, 2011, 159(8):760-768. |
[10] | BORODIN O V, KOSTOCHKA A V, WOODALL D R. Total colorings of planar graphs with large maximum degree[J]. Journal of Graph Theory, 1997, 26(1):53-59. |
[11] | LIU Bin, HOU Jianfeng, WU Jianliang, et al. Total colorings and list total colorings of planar graphs without intersecting 4-cycles[J]. Discrete Mathematics, 2009, 309(20):6035-6043. |
[12] | SANDERS D P, ZHAO Yue. On total 9-coloring planar graphs of maximum degree seven[J]. Journal of Graph Theory, 1999, 31(1):67-73. |
[13] | WANG Bin, WU Jianliang, WANG Huijuan. Total coloring of planar graphs without chordal 6-cycles[J]. Discrete Applied Mathematics, 2014, 171:116-121. |
[14] | SHEN Lan, WANG Yingqian. Total colorings of planar graphs with maximum degree at least 8[J]. Scince in China Series A: Mathematics, 2009, 52(8):1733-1742. |
[15] | WANG Ping, WU Jianliang. A note on total colorings of planar graphs without 4-cycles[J]. Discussiones Mathematicae Graph Theory, 2004, 24(1):125-135. |
[16] | WANG Weifan. Total chromatic number of planar graphs with maximum degree ten[J]. Graph Theory, 2007, 54(2):91-102. |