全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

最大度为7的平面图全染色
Total coloring of planar graphs with maximum degree seven

DOI: 10.6040/j.issn.1671-9352.0.2016.363

Keywords: 平面图,全染色,,权转移,
total coloring
,cycle,planar graph,discharging

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 假设图G是最大度为7的平面图。 利用权转移的方法证明了,如果图G中弦5-圈和弦6-圈不相邻,那么图G的全色数是Δ+1。
Abstract: Let G be a planar graph with maximum degree Δ≥7. It is proved that if chordal 5-cycles of G are not adjacent to chordal 6-cycles, then its total chromatic number is Δ+1 by the discharging method

References

[1]  KOSTOCHKA A V. The total chromatic number of any multigraph with maximum degree five is at most seven[J]. Discrete Mathematics, 1996, 162:199-214.
[2]  WANG Huijuan, LUO Zhaoyang, LIU Bin, et al. A note on the minimum total coloring of planar graphs[J]. Acta Mathematic Sinica, 2016, 32(8):967-974.
[3]  BORODIN O V. On the total coloring of planar graphs[J]. Journal Für Die Reine Und Angewandte Mathematik, 1989, 394:180-185.
[4]  BONDY J A, MURTY U S R. Graph theory with applications[M]. London: MacMillan, 1976.
[5]  BEHZAD M. Graphs and their chromatic numbers[D]. Michigan: Michigan State University, 1965.
[6]  KOWALIK L, SERENI J S, SKREKOVSKI R. Total-coloring of plane graphs with maximum degree nine[J]. Siam Journal on Discrete Mathematics, 2008, 22(4):1462-1479.
[7]  VIZING V G. Some unsolved problems in graph theory[J]. Uspekhi Mat Nauk, 1968, 23(6):117-134.
[8]  王应前, 孙强, 陶鑫, 等. 最大度为7且不含带弦5-圈的平面图是8-全可染的[J]. 中国科学, 2011, 41(1):95-104. WANG Yingqian, SUN Qiang, TAO Xin, et al. Planar graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable[J]. Scientia Sinica, 2011, 41(1):95-104.
[9]  CHANG G J, HOU Jianfeng, ROUSSEL N. Local condition for planar graphs of maximum degree 7 to be 8-totally colorable[J]. Discrete Applied Mathematics, 2011, 159(8):760-768.
[10]  BORODIN O V, KOSTOCHKA A V, WOODALL D R. Total colorings of planar graphs with large maximum degree[J]. Journal of Graph Theory, 1997, 26(1):53-59.
[11]  LIU Bin, HOU Jianfeng, WU Jianliang, et al. Total colorings and list total colorings of planar graphs without intersecting 4-cycles[J]. Discrete Mathematics, 2009, 309(20):6035-6043.
[12]  SANDERS D P, ZHAO Yue. On total 9-coloring planar graphs of maximum degree seven[J]. Journal of Graph Theory, 1999, 31(1):67-73.
[13]  WANG Bin, WU Jianliang, WANG Huijuan. Total coloring of planar graphs without chordal 6-cycles[J]. Discrete Applied Mathematics, 2014, 171:116-121.
[14]  SHEN Lan, WANG Yingqian. Total colorings of planar graphs with maximum degree at least 8[J]. Scince in China Series A: Mathematics, 2009, 52(8):1733-1742.
[15]  WANG Ping, WU Jianliang. A note on total colorings of planar graphs without 4-cycles[J]. Discussiones Mathematicae Graph Theory, 2004, 24(1):125-135.
[16]  WANG Weifan. Total chromatic number of planar graphs with maximum degree ten[J]. Graph Theory, 2007, 54(2):91-102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133