|
- 2017
基于第四类Chebyshev多项式零点的Lagrange插值多项式逼近
|
Abstract:
摘要: 给出了最大框架下基于第四类Chebyshev结点组的Lagrange插值多项式在最大范数下逼近一类解析函数时的精确误差。又针对Lp(p>1)范数,给出了插值函数对该类解析函数类的逼近误差的强渐近阶。
Abstract: This paper first provides the exact approximation errors for an analytic function class under the maximum norm based on the Lagrange interpolation polynomials with the fourth Chebyshev nodes in the worst setting. As for the norm of Lp(p>1), the corresponding strong asymptotic order for that kind of analytic function class is obtained
[1] | 谢庭藩,周颂平. 实变函数逼近论[M].杭州:杭州大学出版社,1998. XIE Tingfan, ZHOU Songping. Approximation theory of real functions[M]. Hangzhou: Hangzhou University Press, 1998. |
[2] | HARRIS L A. Lagrange polynomials, reproducing kernels and cubature in two dimensions[J]. Journal of Approximation Theory, 2015, 195: 43-56. |
[3] | NEVAI P, XU Y. Mean convergence of Hermite-interpolation[J]. Journal of Approximation Theory, 1994, 77(3): 282-304. |
[4] | SZABAGOS J, VéRTESI P. A Survey on mean convergence of interpolatory processes[J]. Journal of Computational and Applied Mathematics, 1992, 43: 3-18. |
[5] | VéRTESI P, XU Y. Mean convergence of Hermite interpolation revisited[J]. Acta Mathematica Hungarica, 1995, 69(3): 185-210. |
[6] | SHI Yingguang. On Hermite interpolation[J]. Journal of Approximation Theory, 2000, 105(1): 49-86. |
[7] | XU Guiqiao. On weak tractability of the Smolyak algorithm for approximation problems[J]. Journal of Approximation Theory, 2014, 192: 347-361. |
[8] | SZABADOS J, VéRTESI P. Interpolation of Functions[M]. Singapore: World Scientific, 1990. |
[9] | VARMA A K, PRASAD J. An analogue of a problem of P. Erd?s and E. Feldheim on <i>L<sub>p</sub></i> convergence of interpolatory processes[J]. Journal of Approximation Theory, 1989, 56(2): 225-240. |
[10] | SHI Yingguang. Convergence of Hermite-Féjer type interpolation of higher order on an arbitrary system of nodes[J]. Journal of Approximation Theory, 2003, 123(2): 173-187. |
[11] | DEVORE R A, LORENTZ G G. Constructive approximation[M]. Berlin: Springer, 1993. |