|
- 2017
一类退化抛物型方程反问题的收敛性分析
|
Abstract:
摘要: 考虑了一类利用附加观测数据重构二阶非散度退化抛物型方程的主项系数的反问题,该问题被转化为一个最优控制问题。本文的问题在于主项系数是未知的,而方程的退化程度通常是由主项系数的性质所决定的。通过引入赋权的Sobolev空间和一些新的源条件,并对主项系数的允许函数类附加了较强的正则性条件,证明了最优解的收敛性。
Abstract: This paper consider an inverse problem of reconstructing the principal coefficient in a second order degenerate parabolic equation of non-divergence form by using some additional observation data. It is transformed into an optimal control problem. The major problem is that the principal coefficient is unknown, but the degenerate degree of equation is determined, in general, by the principal coefficient. By introducing some weighted Sobolev spaces and some new source conditions, and adding a strong regularity condition to the admissible function set of the principal term, we prove the convergence of the optimal solution
[1] | DENG Zuicha, YANG Liu. An inverse problem of identifying the coefficient of first-order in a degenerate parabolic equation[J]. Journal of Computational and Applied Mathematics, 2011, 235:4404-4417. |
[2] | EGGER H, ENGL H W. Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rate[J]. Inverse Problems, 2005, 21:1027-1045. |
[3] | DINH N H, TRAN N T Q. Convergence rates for Tikhonov regularition of coefficient identification problems in Laplace-type equations[J]. Inverse Problems, 2010, 26:1-22. |
[4] | ENHL H W, ZOU Jun. A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction[J]. Inverse Problems, 2000, 16:1907-1923. |
[5] | ZENG Yuhua, WANG Shoulei, YANG Yufei. Calibration of volatility in option pricing using the total variation regularization[J]. Journal of Applied Mathematics, 2014, 2014:1-9. |
[6] | 蔡超.一类Kolmogorov型方程的系数反演问题[J].山东大学学报(理学版),2016,51(4):127-134. CAI Chao. An inverse problem of identifying the coefficient in a Kolmogorov type equation[J]. Journal of Shandong University(Natural Science), 2016, 51(4):127-134. |
[7] | DENG Zuicha, YANG Liu. An inverse radiative coefficient problem arising in a two-dimensional heat conduction equation with a homogeneous Dirichlet boundary condition in a circular section[J]. Journal of Mathematical Analysis and Applications, 2016, 435:917-943. |
[8] | DENG Zuicha, YANG Liu. An inverse problem of identifying the radiative coefficient in a degenerate parabolic equation[J]. Chinese Annals of Mathematics, 2014, 35B(3):355-382. |
[9] | 姜礼尚,陈亚浙,刘西垣,等.数学物理方程讲义[M].3rd.北京:高等教育出版社,2007. JIANG Lishang, CHEN Yazhe, LIU Xiyuan, et al. Mathematical physics equation handout [M]. 3rd. Beijing: Higher Education Press, 2007. |
[10] | DENG Zuicha, YANG Liu, YU Jianning, et al. Identifying the diffusion coefficient by optimization from the final observation[J]. Applied Mathematics and Compution, 2013, 219:4410-4422. |