|
- 2016
Monadic MV-代数上的微分
|
Abstract:
摘要: 在Monadic MV-代数(M,?)上引入并研究了M-微分。定义并研究了Monadic MV-代数(M,?)上的强M-微分和正则M-微分,利用强M-微分,给出了一个MV-代数成为布尔代数的等价刻画,并给出了正则M-微分成为保序M-微分的等价刻画。进一步地,在Monadic MV-代数(M,?)上定义不动点集合Fd?,证明了若d为保序微分时,Monadic MV-代数上的不动点之集为M的格理想。随后,在Monadic MV-代数上定义并研究了可加微分,从而得到了一些关于可加微分的重要性质。最后,在微分Monadic MV-代数(M,?,d)上定义了Monadic微分理想,并对其进行了刻画,而且研究了(M,?,d)上所有Monadic微分理想组成的集合ID(M)的代数结构。
Abstract: We define the notion of M-derivations on monadic MV-algebras(M,?)and discuss some properties of it. Based on it, the notions of the strong M-derivations and regular M-derivations are introduced. By use of strong M-derivations, we give some equivalent conditions in which a MV-algebra becomes a boolean algebra. Next, some characterizations about the isotone M-derivations in monadic MV-algebras are provided by regular M-derivations. Moreover, the notion of the fixed set of a derivation in monadic MV-algebras is introduced and discussed. The notion of additive derivations of monadic MV-algebras are given and some of its properties are investigated. Also, we prove that an additive derivation of linearly ordered monadic MV-algebras is isotone. Finally, monadic differential ideals of monadic MV-algebras are studied. In particular, algebraic structures of the set ID(M)of all monadic differential ideals on regular monadic MV-algebras are researched
[1] | RASOULI S, DAVVAZ B. Roughness in MV-algebras[J]. Information Sciences, 2010, 180(5):737-747. |
[2] | BIRKHOFF G. Lattice theory[M]. Rhode Island: American Mathematical Society, 1940. |
[3] | CHANG C C. Algebraic analysis of many valued logics[J]. Transactions of the American Mathematical Society, 1958, 88(2):467-490. |
[4] | 冯敏, 辛小龙, 李毅君. MV-代数上的<i>f</i>导子和<i>g</i>导子[J]. 山东大学学报(理学版), 2014, 49(6):50-56. FENG Min, XIN Xiaolong, LI Yijun. On <i>f</i> derivations and <i>g</i> derivations of MV-algebras[J]. Journal of Shangdong University(Natural Science), 2014, 49(6):50-56. |
[5] | 王军涛, 辛小龙, 贺鹏飞. MV-代数上的(→,⊕)-导子[J]. 陕西师范大学学报(自然科学版), 2015, 43(4):16-27. WANG Juntao, XIN Xiaolong, HE Pengfei. On(→,⊕)-derivation of MV-algebras[J]. Journal of Shaanxi Normal University(Natural Science Edition), 2015, 43(4):16-27. |
[6] | 王军涛, 辛小龙, 邹宇晰. 超环上的<i>f</i>导子[J]. 西北大学学报(自然科学版), 2015, 45(5):693-698. WANG Juntao, XIN Xiaolong, ZOU Yuxi. On f derivations of hyerrings[J]. Journal of Northwest University(Natural Science Edition), 2015, 45(5):693-698. |
[7] | NOLA A D, GRIGILIA R. On monodic MV-algebras[J]. Annals of Pure and Applied Logic, 2004, 128(3):125-139. |
[8] | POSNER E. Derivations in prime rings[J]. Proceedings of the American Mathematical Society, 1957, 8(6):1093-1100. |
[9] | BELL H E, MASON G. On derivations in near-rings[J]. North-Holland Mathematics Studies, 1987, 137:31-35. |
[10] | JUN Y B, XIN Xiaolong. On derivations of BCI-algebras[J]. Information Sciences, 2004, 159(3):167-176. |
[11] | XIN Xiaolong, LI Tiyao, LU Jinghua. On derivations of lattices [J]. Information Sciences, 2008, 178(2):307-316. |
[12] | CIGNOLI R, DOTTAVIANO I D, MUNDICI D. Algebra foundations of many-valud resoning[M]. Dordrechet: Kluwer Academic Publishers, 2000. |
[13] | RUTLEDGE J D. A preliminary investigation of the infinitely many-valued predicate calculus[D]. New York: Cornell University, 1959. |
[14] | WANG Juntao, JUN Y B, XIN Xiaolong, et al. On derivations of Hyperlattices[J]. Journal of Mathematical Research with Applications, 2016, 36(2):151-161. |
[15] | ALSHEHRI N O. Derivations of MV-Algebras[J]. International Journal of Mathematics and Mathematical Sciences, 2010. Doi: 10.1155/2010/312027. |