|
- 2015
最大度为3或4的图的邻和可区别全染色
|
Abstract:
摘要: 图G的一个正常[k]-全染色是一个映射φ:V∪E→{1,2,…,k},使得V∪E中任意一对相邻或者相关联元素染不同颜色.用f(v)表示点v及所有与其关联的边的颜色的加和,若对任意uv∈E(G),有f(u)≠f(v),则称该染色为图G的[k]-邻和可区别全染色.k的最小值称作图G的邻和可区别全色数,记为tndiΣ(G).
Abstract: A proper [k]-total coloring of a graph G is a map φ:V∪E→{1,2,…,k} such that φ(x)≠φ(y) for each pair of adjacent or incident elements x,y∈V∪E. Let f(v) denote the sum of the color of vertex v and the colors of the edges incident with v. A [k]-neighbor sum distinguishing total coloring of G is a [k]-total coloring of G such that for each edge uv∈E(G), f(u)≠f(v). Let tndiΣ(G) denote the smallest value k in such a coloring of G. Pil?niak and Wo?niak first introduced this coloring and conjectured that tndiΣ(G)≤Δ(G)+3 for any simple graph with maximum degree Δ(G). The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad(G). By using the Combinatorial Nullstellensatz and the discharging method, it is proved that if G is a graph with Δ(G)=3 and mad(G)<125, or Δ(G)=4 and mad(G)<52, then tndiΣ(G)≤Δ(G)+2
[1] | LI Hualong, LIU Bingqiang, WANG Guanghui. Neighbor sum distinguishing total colorings of K<sub>4</sub>-minor-free graphs[J]. Frontiers of Mathematics of China, 2013, 8(6):1351-1366. |
[2] | ALON N. Combinatorial Nullstellensatz[J]. Combin Probab Comput, 1999, 8:7-29. |
[3] | 李华龙, 丁来浩, 王光辉. 图的邻和可区别染色[EB/OL]. 中国科技论文在线, 2014, http://www. paper.edu.cn/release-paper/content/20140198. LI Hualong, DING Laihao, WANG Guanghui. Neighbor sum distinguishing colorings of graphs[EB/OL]. Sciencepaper Online, 2014, http://www. paper.edu.cn/releasepaper/content/20140198. |
[4] | PIL?NIAK M, WO?NIAK M. On the adjacent vertex distinguishing index by sums in total proper colorings[EB/OL]. Graphs and Comb. DOI:10.1007/S00373-013-1339-4(2013). |
[5] | FLANDRIN E, MARCZYK A, PRZYBYLO J, et al. Neighbor sum distinguishing index[J]. Graphs and Combin, 2013, 29:1329-1336. |
[6] | DONG Aijun, WANG Guanghui. Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree[J]. Acta Mathematica Sinica, 2014, 30(4):703-709. |