全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

最大度为3或4的图的邻和可区别全染色
Neighbor sum distinguishing total coloring of graphs with maximum degree 3 or 4

DOI: 10.6040/j.issn.1671-9352.0.2014.362

Keywords: 邻和可区别全染色,最大平均度,组合零点定理,
neighbor sum distinguishing total coloring
,maximum average degree,Combinatorial Nullstellensatz

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 图G的一个正常[k]-全染色是一个映射φ:V∪E→{1,2,…,k},使得V∪E中任意一对相邻或者相关联元素染不同颜色.用f(v)表示点v及所有与其关联的边的颜色的加和,若对任意uv∈E(G),有f(u)≠f(v),则称该染色为图G的[k]-邻和可区别全染色.k的最小值称作图G的邻和可区别全色数,记为tndiΣ(G).
Abstract: A proper [k]-total coloring of a graph G is a map φ:V∪E→{1,2,…,k} such that φ(x)≠φ(y) for each pair of adjacent or incident elements x,y∈V∪E. Let f(v) denote the sum of the color of vertex v and the colors of the edges incident with v. A [k]-neighbor sum distinguishing total coloring of G is a [k]-total coloring of G such that for each edge uv∈E(G), f(u)≠f(v). Let tndiΣ(G) denote the smallest value k in such a coloring of G. Pil?niak and Wo?niak first introduced this coloring and conjectured that tndiΣ(G)≤Δ(G)+3 for any simple graph with maximum degree Δ(G). The maximum average degree of G is the maximum of the average degree of its non-empty subgraphs, which is denoted by mad(G). By using the Combinatorial Nullstellensatz and the discharging method, it is proved that if G is a graph with Δ(G)=3 and mad(G)<125, or Δ(G)=4 and mad(G)<52, then tndiΣ(G)≤Δ(G)+2

References

[1]  LI Hualong, LIU Bingqiang, WANG Guanghui. Neighbor sum distinguishing total colorings of K<sub>4</sub>-minor-free graphs[J]. Frontiers of Mathematics of China, 2013, 8(6):1351-1366.
[2]  ALON N. Combinatorial Nullstellensatz[J]. Combin Probab Comput, 1999, 8:7-29.
[3]  李华龙, 丁来浩, 王光辉. 图的邻和可区别染色[EB/OL]. 中国科技论文在线, 2014, http://www. paper.edu.cn/release-paper/content/20140198. LI Hualong, DING Laihao, WANG Guanghui. Neighbor sum distinguishing colorings of graphs[EB/OL]. Sciencepaper Online, 2014, http://www. paper.edu.cn/releasepaper/content/20140198.
[4]  PIL?NIAK M, WO?NIAK M. On the adjacent vertex distinguishing index by sums in total proper colorings[EB/OL]. Graphs and Comb. DOI:10.1007/S00373-013-1339-4(2013).
[5]  FLANDRIN E, MARCZYK A, PRZYBYLO J, et al. Neighbor sum distinguishing index[J]. Graphs and Combin, 2013, 29:1329-1336.
[6]  DONG Aijun, WANG Guanghui. Neighbor sum distinguishing total colorings of graphs with bounded maximum average degree[J]. Acta Mathematica Sinica, 2014, 30(4):703-709.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133