全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

直积图邻点可区别E-全染色的一些结论
Several conclusions of adjacent vertex distinguishing E-total coloring of the cartesian product graphs

DOI: 10.6040/j.issn.1671-9352.0.2014.137

Keywords: 色数,直积图,邻点可区别E-全染色,邻点可区别E-全色数,
the chromatic numbers
,the cartesian product graph,the adjacent vertex distinguishing E-total coloring,the adjacent vertex distinguishing E-total chromatic number

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 运用分析法研究了直积图的邻点可区别E-全染色, 讨论了对于点色数至少为2以及邻点可区别E-全色数为3, 4的简单图的直积图的邻点可区别E-全色数, 并得出了一些相关推论.
Abstract: By using of the analysis method, the adjacent vertex distinguishing E-total coloring of the cartesian product graphs are studied, and the adjacent vertex distinguishing E-total chromatic numbers for the cartesian products of the graphs with chromatic number at least 2 or the graphs with adjacent vertex distinguishing E-total chromatic numbers 3 or 4 are discussed, some relevant conclusions are also obtained

References

[1]  ZHANG Zhongfu, CHEN Xiangen, LI jingwen, et al. On adjacent-vertex-distinguishing total coloring of graphs[J]. Science in China, Ser. A Mathematics, 2005, 48(3):289-299.
[2]  李沐春, 张忠辅. 一类多重联图的邻点可区别E-全染色[J]. 纯粹数学与应用数学, 2010, 26(1):36-41. LI Muchun, ZHANG Zhongfu. Adjacent vertex-distinguishing E-total Coloring on a class of the multiple join Graphs[J]. Pure and Applied Mathematics, 2010, 26(1):36-41.
[3]  WEST Douglas B. 图论导引[M]. 李建中,骆吉洲,译. 北京: 机械工业出版社, 2006.2.
[4]  ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letter, 2002, 15:623-626.
[5]  CHEN Xiangen, GAO Yuping, YAO Bing. Not necessarily proper total colourings which are adjacent vertex distinguishing[J]. International Journal of Computer Mathematics, 2013, 90(11):2298-2307.
[6]  李沐春, 张忠辅. 若干笛卡尔积图的邻点可区别E-全染色[J]. 数学实践与认识, 2009,39(3):215-219. LI Muchun, ZHANG Zhongfu. Adjacent Vertex-distinguishing E-total Coloring on Product of Graphs of Some Graphs[J]. Mathematics in Practice and Theory, 2009, 39(3):215-219.
[7]  BONDY J A, MURTY U S R. Graph Theory[M]. New York: Springer, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133