|
- 2017
Keller-Segel型交叉扩散方程组柯西问题解的逐点估计
|
Abstract:
摘要: 研究了一类Keller-Segel型交叉扩散方程组的柯西问题。 利用Green函数的方法, 得到带有小初值的柯西问题解的逐点估计, 以及解在W s,p(Rn)空间中的衰减性质。
Abstract: We consider the Canchy problem for a class of Keller-Segel equations with cross-diffusion. By utilizing the method of Greens function, we obtain the pointwise estimates of solutions to the Cauchy problem for small initial data, and the W s,p(1≤p≤∞) decay properties of solutions
[1] | HITTMEIR S, J(¨overU)NGEL A. Cross diffusion preventing blow-up in the two-dimensional Keller-Segel mode[J]. SIAM Journal on Mathematical Analysis, 2011, 43(2):997-1022. |
[2] | CARRILLO J A, HITTMEIR S, J(¨overU)NGEL A. Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model[J]. Math Models Methods Appl Sci, 2012, 22(12):1250041.1-1250041.35. |
[3] | NAGAI T. Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains[J]. Journal of Inequalities and Applications, 2001, 6(1):37-55. |
[4] | XIANG Tian. On a class of Keller-Segel chemotaxis systems with cross-diffusion[J]. Journal of Differential Equations, 2015, 259(8):4273-4326. |
[5] | SHI Renkun, WANG Weike. The piontwise estimates of solutions to the Cauchy problem of a chemotaxis model[J]. Chinese Annals of Mathematics, Series B, 2016, 37(1):111-124. |
[6] | STEIN E M. Singular integrals and differentiability properties of functions[M]. Princeton: Princeton University Press, 1970. |
[7] | WANG Weike, YANG Tong. The pointwise estimates of solutions for Euler equations with damping in multi-dimensions[J]. Journal of Differential Equations, 2001, 173(2):410-450. |
[8] | CHEN Jiao, WANG Weike. The point-wise estimates for the solution of damped wave equation with nonlinear convection in multi-dimensional space[J]. Communications on Pure and Applied Analysis, 2014, 13(1):307-330. |
[9] | WANG Weike. Nonlinear evolution systems and Greens function[J]. Acta Mathematica Scientia, 2010, 30(6):2051-2063. |
[10] | LIU Taiping, WANG Weike. The pointwise estimates of diffusion wave for the Navier-Stokes systems in odd-dimension[J]. Communications in Mathematical Physics, 1998, 196(1):145-173. |
[11] | LI Fengbai, WANG Weike. The piontwise estimates of solutions to the parabolic conservation law in multi-dimensions[J]. Nonlinear Differential Equations and Applications, 2014, 21(1):87-103. |
[12] | KELLER E F, SEGEL L A. Initiation of slime mold aggregation viewed as an instability[J]. Journal of Theoretical Biology, 1970, 26(3):399-415. |
[13] | LIN Changshou, NI Weiming, TAKAGI I. Large amplitude stationary solutions to a chemotaxis system[J]. Journal of Differential Equations, 1998, 72(1):1-27. |
[14] | HORSTMANN D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences[J]. Jahresber Deutsch Math Verein, 2004, 106(2):51-70. |
[15] | LIU Taiping, ZENG Yanni. Large time behavior of solutions for general quasilinear hyperbolic-parabolic systems of conservation laws[M]. Providence: American Mathematical Scoiety, 1997. |
[16] | WANG Weike, WU Zhigang. Pointwise estimates of solution for the Navier-Stokes-Poisson equations in multi-dimensions[J]. Journal of Differential Equations, 2010, 248(7):1617-1636. |