全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

N(2,2,0)代数的内正则半群
Intra-regular semigroups of N(2,2,0)algebra

DOI: 10.6040/j.issn.1671-9352.0.2016.147

Keywords: 0)代数,2,N(2,内正则半群,左零元,内正则元,
N(2
,2,0)algebra,left nil element,intra-regular element,intra-regular semigroups

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 讨论了N(2,2,0)代数的半群内正则性,给出了两个特殊集合P(a),H(a)以及左零元的特征,并以实例解释了相关结论。刻画了N(2,2,0)代数的半群的左零元与正则元、内正则元的关系。
Abstract: Some description about intra-regularity of semigroups of N(2,2,0)algebra is given. Some properties about two special sets P(a), H(a) and left(right)nil element of semigroups of N(2,2,0)algebra are discussed. It is provided that a relationships between left(right)nil element and regular element and intra-regular element

References

[1]  陈露.关于<i>N</i>(2,2,0)代数的中间幂等元[J].纯粹数学与应用数学,2011,27(4):433-436. CHEN Lu. Medial idempotents of <i>N</i>(2,2,0)algebra[J]. Pure and Applied Mathematics, 2011, 27(4):433-436.
[2]  邓方安.<i>N</i>(2,2,0)代数的RC-半群[J].山东大学学报(理学版),2011,46(6):8-11. DENG Fang-an. RC-semigroups of <i>N</i>(2,2,0)algebra[J]. Journal of Shandong University(Natural Science), 2011, 46(1):8-11.
[3]  邓方安.<i>N</i>(2,2,0)代数的E-反演半群[J].数学杂志,2014, 34(5):977-984. DENG Fang-an. E-inversive semigroups of <i>N</i>(2,2,0)algebra[J]. Journal of Mathematics, 2014, 34(5):977-984.
[4]  李旭东. <i>N</i>(2,2,0)代数的稳定化子[J].山东大学学报(理学版), 2011,46(8):68-72. LI Xudong. Stabilizer of <i>N</i>(2,2,0)algebras[J]. Journal of Shandong University(Natural Science), 2011,46(8):68-72.
[5]  张建忠,傅小波,廖祖华.<i>N(</i>2<i>,</i>2<i>,</i>0<i>)</i>代数的<i>(∈, ∈∨q<sub>(λ, μ)</sub>)</i>-模糊正关联理想[J].计算机科学与探索,2014,8(5):622-629. ZHANG Jianzhong, FU Xiaobo, LIAO Zuhua. <i>(∈, ∈∨q<sub>(λ, μ)</sub>)</i>-Fuzzy positive implicative ideal of <i>N</i>(2,2,0)algebras[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(5):622-629.
[6]  张建忠,傅小波,廖祖华.<i>N(</i>2<i>,</i>2<i>,</i>0<i>)</i>代数的<i>(∈, ∈∨q<sub>(λ, μ)</sub>)</i>-模糊理想[J].计算机科学与探索, 2013,7(11):1048-1056. ZHANG Jianzhong, FU Xiaobo, LIAO Zuhua. <i>(∈, ∈∨q<sub>(λ, μ)</sub>)</i>-Fuzzy Ideal of <i>N</i>(2,2,0)algebras[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11):1048-1056.
[7]  傅小波,廖祖华.<i>N(</i>2<i>,</i>2<i>,</i>0<i>)</i>代数的<i>(∈<sup>δ</sup>, ∈<sup>δ</sup>∨q<sup>δ</sup><sub>(λ, μ)</sub>)</i>-模糊理想[J].计算机科学与探索,2016,10(3):1-9. FU Xiaobo, LIAO Zuhua. <i>(∈<sup>δ</sup>, ∈<sup>δ</sup>∨q<sup>δ</sup><sub>(λ, μ)</sub>)</i>-Fuzzy Ideals of <i>N</i>(2,2,0)algebras[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(3):1-9.
[8]  NAGY A. Regular RGC<sub><i></i></sub><i>n</i>-commutative semigroups[J]. Scientia Iranica, 2005, 12(1):10-13.
[9]  邓方安,徐扬.关于<i>N</i>(2,2,0)代数[J].西南交通大学学报,1996,31(4):457-463. DENG Fang-an, XU Yang. On <i>N</i>(2,2,0)algebras[J]. Journal of Southwest Jiaotong University, 1996, 31(4):457-463.
[10]  陈露.关于<i>N</i>(2,2,0)代数的中间单位[J].黑龙江大学自然科学学报,2014,31(3):287-290. CHEN Lu. On middle units in <i>N</i>(2,2,0)algebra[J]. Journal of Natural Science of Heilongjiang University, 2014, 31(3):287-290.
[11]  邓方安,徐扬,袁俭.<i>N</i>(2,2,0)代数的理想与关联理想[J].汉中师范学院学报,1998,16(1):6-9. DENG Fang-an, XU Yang, YUAN Jian. Ideal and relevant ideal of <i>N</i>(2,2,0)algebra[J]. Journal of Hanzhong Teachers College, 1998, 16(1): 6-9.
[12]  邓方安,雍龙泉. <i>N</i>(2,2,0)代数的正则半群[J].数学进展,2012, 41(6): 665-671. DENG Fang-an, YONG Longquan. Regular semigroups of <i>N</i>(2,2,0)algebra[J]. Advances in Mathematics, 2012, 41(6):665-671.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133