|
- 2016
基于因子分解机的信任感知商品推荐
|
Abstract:
摘要: 数据稀疏和运行速度慢是个性化推荐系统面临的难题。为了有效利用用户历史行为,基于用户的评分记录识别出用户感兴趣的内容,并结合用户间的信任关系,提出使用因子分解机(factorization machine, FM)模型进行评分预测。FM具有线性时间复杂度,并且对于稀疏的数据具有很好的学习能力,因而能进行快速推荐。试验结果表明,与传统方法相比,基于因子分解机的商品推荐方法的准确度有明显提高。
Abstract: The personalized recommender system suffers from sparse data and slow recommendation speed. A score prediction model based on Factorization Machine(FM)was proposed. The FM model utilizes users access history, identifies user-interested contents based on their scoring records and integrates trusts among different users. FM has a linear time complexity and excellent learning capability for sparse data, so it can quickly recommend. The results showed that the proposed FM model based on product recommendation approach was significantly more accurate than the traditional methods
[1] | GOLBECK J, MASSA P, AVESANI P. Trust metrics in recommender systems[M] //GOLBECK J. Computing with Social Trust. London: Springer, 2009: 259-285. |
[2] | JENSEN C, POSLAD S, DIMITRAKOS T, et al. Using trust in recommender systems: an experimental analysis[M] //JENSEN C, POSLAD S, DIMITRAKOS T. Trust Management. Berlin: Springer, 2004:221-235. |
[3] | 俞琰, 邱广华. 融合社会网络的协同过滤推荐算法研究[J]. 现代图书情报技术, 2012(6):54-59. YU Yan, QIU Guanghua. Research on collaborative filtering recommendation algorithm by fusing social network[J].New Technology of Library and Information Service, 2012(6):54-59. |
[4] | 刘建国, 周涛, 郭强,等. 个性化推荐系统评价方法综述[J]. 复杂系统与复杂性科学, 2009,6(3):1-10. LIU Jianguo, ZHOU Tao, GUO Qiang, et al. Overview of the evaluated algorithms for the personal recommendation systems[J].Complex Systems and Complexity Science, 2009, 6(3):1-10. |
[5] | BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[C] //Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence. Madison, Wisconsin: Morgan Kaufmann Publishers Inc, 1998:43-52. |
[6] | SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C] //Proceedings of the 10th International Conference on World Wide Web. Hong Kong: ACM, 2001: 285-295. |
[7] | YOSHII K, GOTO M, KOMATANI K, et al. An efficient hybrid music recommender system using an incrementally trainable probabilistic generative model[J]. Audio, Speech, and Language Processing, IEEE Transactions on, 2008, 16(2):435-447. |
[8] | 张富国. 用户多兴趣下基于信任的协同过滤算法研究[J]. 小型微型计算机系统, 2008,29(8):1415-1419. ZHANG Fuguo. Research on trust based collaborative filtering algorithm for users multiple interests[J]. Journal of Chinese Computer Systems, 2008, 29(8):1415-1419 |
[9] | RENDLE S. Factorization machines[C] //Proceedings of the 10th IEEE International Conference on Data Mining.New York:IEEE Press, 2010:995-1000. |
[10] | GOLDBERG D, Nichols D, OKI B M, et al. Using collaborative filtering to weave an information tapestry[J].Communications of the ACM, 1992, 35(12):61-70. |
[11] | ADOMAVICIUS G, TUZHAILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. Knowledge and Data Engineering, IEEE Transactions on, 2005, 17(6):734-749. |