全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

新的加速Bregman迭代方法在稀疏最小二乘问题中的应用
Application of a new accelerating Bregman iterative algorithm in the sparse least squares problems

DOI: 10.6040/j.issn.1671-9352.4.2015.004

Keywords: 稀疏最小二乘问题,Nesterov加速技巧,Bregman迭代,
Nesterov accelerating technique
,Bregman iteration,the sparse least squares problems

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 结合残量Bregman迭代方法以及不动点迭代方法提出一种迭代算法,对预测校正算法应用Nesterov技巧进行加速,并且作用于最小二乘问题。理论上证明了新算法得到的解收敛到目标函数的最优解,并将新算法应用到稀疏信号恢复问题上,数值试验表明新算法能够快速有效地恢复信号。
Abstract: Based on the residual Bregman iterative algorithm and fixed point iteration, a novel Bregman iterative algorithm is proposed. Then, inspired by the equivalence of the linearized Bregman and the gradient descent algorithm of the dual problem, a new algorithm by introducing Nesterov accelerating technique into the predictor-corrector method is put forward for solving the sparse least squares problems. Simultaneously, It is proved that the solution sequence obtained by the new method is the optimal solution of the sparse least squares problems. Finally, we use the new method to the sparse signal recovery problem. The numerical results show that the new method is faster and more efficientthan the old ones

References

[1]  YIN Wotao, OSHERS Stanley, GOLDFARB D, et al. Bregman iterative algorithms forl<sub>1</sub>-minimization with applications to compressed sensing[J]. SIAM J Imaging Sciences, 2008, 1(1):143-168.
[2]  VOGEL C R, OMAN M E. Iterative methods for total variation denoising[J]. SIAM Journal on Scientific Computing, 1996, 17(1):227-238.
[3]  GOLUBG H, VAN LOAN C F. Matrix computations[M].4th ed.Baltimore: The Johns Hopkins University Press, 2013.
[4]  李娟, 李维国, 郑昭静. 求解稀疏最小二乘问题的新型Bregman迭代正则化算法[J]. 信号处理, 2012, 8:1164-1170. LI Juan, LI Weiguo, ZHENG Zhaojing. A New Bregman Iterative Regularization Algorithm forSparse Least Squares Problems[J]. Signal Processing, 2012, 8:1164-1170.
[5]  郑昭静,李维国. 基于Bregman迭代的稀疏最小二乘问题的预测校正法[J]. 高等学校计算数学学报, 2014, 36(2):167-182. ZHENG Zhaojing, LI Weiguo. Predictor-CorrectorAlgorithm Based onBregman Iterationfor Sparse LeastSquaresProblems[J]. Numerical Mathematics A Journal of Chinese Universities, 2014, 36(2):167-182.
[6]  YIN Wotao. Analysis and generalization of linearized Bregmanmethod[J]. SIAM Journal on Imaging Sciences, 2010, 3(4):856-877.
[7]  ZHANG Hui, YIN Wotao. Gradient methods for convex minimization: better rates under weaker conditions[EB/OL] //[2015-04].arXiv:1303.4645v2[math.OC]. http://arxiv.org/abs/1303.4645
[8]  DONOHOD L. De-noising by soft-thresholding[J]. IEEE Transactions Information Theory, 1995, 41(3):613-627.
[9]  OSHER S, BURGER M, GOLDFARB D, et al. An iterative regularization method for total variation-based image restoration[J]. Multiscale Modeling and Simulation, 2005, 4(2):460-489.
[10]  CAI Jianfeng, OSHER S, SHEN Zuowei. Linearized Bregman iterations for compressed sensing[J] Mathematics of Computation, 2009, 78(267):1515-1536.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133