全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

Topos中偏序对象的上(下)确界
The supremum and infimum of partially ordered objects in a topos

DOI: 10.6040/j.issn.1671-9352.0.2015.430

Keywords: 偏序对象,完备偏序对象,topos,上(下)确界,
partially ordered object
,supremum(infimum),topos,complete partially ordered object

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 基于topos中的偏序对象, 讨论了topos中的上下确界的定义, 推广了格论中的经典结论, 将一些格论中熟知的结论提升到了topos中。 得到了主要结果:topos中的对象为完备偏序对象当且仅当该对象的任意广义子集存在上(下)确界。
Abstract: The concepts of supremum and infimum which are common generalizations of lattice theory is introduced, and some well-known lattice theory into an arbitrary topos is lifted. The main result that an object in a topos is a complete partially ordered object if and only if its general subset has supremum and infimum is obtianed

References

[1]  孟晓青. Topos理论简介[J]. 数学进展, 1992, 21(1):1-24. MENG Xiaoqing. An introduction to topos theory[J]. Advances in Mathematics, 1992, 21(1):1-24.
[2]  LUO Maokang, HE Wei. A new logic for uncertainty[J]. 2015, http://arxiv.org/abs/1506.03123.
[3]  卢涛,王习娟,贺伟.Topos中的完备偏序对象上的算子理论[J].山东大学学报(理学版),2016,51(2):64-71. LU Tao, WANG Xijuan, HE Wei. The operator theory on complete partially ordered objects in a topos[J]. Journal of Shandong University(Natural Science), 2016, 51(2):64-71.
[4]  JOHNSTONE P T, JOYAL A. Continuous categories and exponentiable toposes[J]. Journal of Pure and Applied Algebra, 1982, 25:255-296.
[5]  KOCK A, LECOUTURIER P, MIKKELSEN C J. Some topos theoretic concepts of finiteness[J]. Lecture Notes in Math. Berlin: Springer-Verlag, 1975, 445:209-283.
[6]  HE Wei, LUO Maokang. Quantum spaces[J]. Acta Mathematica Sinica, English Series, 2010, 26(7):1323-1330.
[7]  MAC LANE S, MOERDIJK L. Sheaves in geometry and logic: a first introduction to topos[M]. New York: Springer-Verlag, 1992.
[8]  MAC LANE S. Categories for working mathematician[M]. New York: Springer-Verlag, 1972.
[9]  卢涛, 贺伟, 王习娟. Galois connections in a topos[J]. 数学研究与评论, 2010, 30(3):381-389. LU Tao, HE Wei, WANG Xi Juan. Galois connections in a topos[J]. Journal of Mathematical Research and Exposition, 2010, 30(3):381-389.
[10]  王习娟, 贺伟. On the heyting algebra objects in a topos[J]. Journal of Mathematics, 2011, 31(6):979-998. WANG Xijuan, HE Wei. On the heyting algebra objects in a topos[J]. 数学杂志, 2011, 31(6):979-998.
[11]  贺伟. 范畴论[M]. 北京: 科学出版社, 2006. HE Wei. Category theory[M]. Beijing: Science Press, 2006.
[12]  JOHNSTONE P T. Sketches of an elephant: a topos theory compendium[M]. Oxford: Oxford University Press, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133