|
- 2018
复线性微分方程解的增长性的进一步讨论
|
Abstract:
摘要: 应用Nevanlinna理论讨论了复线性微分方程解的增长性, 主要研究了Gundersen最近提出的一个问题, 获得了一些结果。这些结果是前人结果的延伸及推广。
Abstract: The growth of solutions of complex linear differential equations is discussed by using Nevanlinna theory. Some results concerning a problem of Gundersen are obtained in this paper, which are improvement of predecessors
[1] | GUNDERSEN G G. Estimates for the logarithmic derivative of a meromorphic function[J]. Journal of the London Mathematic Society, 1988, 37:88-104. |
[2] | HILLE E. Lectures on ordinary differential equations[M]. Oxford: Technology Press of the Massachusetts, 1969. |
[3] | LANGLEY J. On complex oscillation and a problem of Ozawa[J]. Kodai Math, 1986, 9:430-439. |
[4] | BANK S B, LAINE I, LANGLEY J. On the frequency of zeros of solutions of second order linear differential equations[J]. Results Math, 1986, 10:8-24. |
[5] | HAYMAN W. Meromorphic functions[M]. Oxford: Clarendon Press, 1964. |
[6] | 杨乐. 值分布论及其新研究[M]. 北京:科学出版社, 1982. YANG Le. Value distribution theory and new studies[M]. Beijing: Science Press, 1982. |
[7] | GUNDERSEN G G. Research questions on meromorphic functions and complex differential equations[J]. Computational Methods and Function Theory, 2017, 17(1):195-209. |
[8] | LONG Jianren, SHI Lei, WU Xiubi, et al. On a question of Gundersen concerning the growth of solutions of linear differential equations[J]. Annales Academiae Scientiarum Fennicae Mathematica, 2018, 43:337-348. |