|
- 2015
时滞非局部扩散Lotka-Volterra 竞争系统行波解的存在性
|
Abstract:
摘要: 研究了时滞非局部扩散Lotka-Volterra竞争系统,利用单调迭代方法,通过构造合适的上下解,运用Schauder不动点定理,得到了系统连接两边界平衡点的行波解的存在性。
Abstract: We consider a delayed nonlocal diffusive Lotka-Volterra competitive system. By using monotone iteration and constructing proper upper-lower solution, we obtain the existence of traveling wave solutions with Schauder's fixed point theorem
[1] | MURRAY. Mathematical Biology: I. An Introduction[M]. New York: Springer-Verlag, 2002. |
[2] | LI Xueshi, LIN Guo. Traveling wavefronts in nonlocal dispersal and cooperative Lotka-Volterra system with delays[J]. Appl Math Comput, 2008, 204(2):738-744. |
[3] | YANG Feiying, LI Wantong, WANG Zhicheng. Traveling waves in a nonlocal dispersai Kermack-Mckendrick epidemic model[J]. Disc Cont Dyna Syst, 2013, 18(7):1969-1993. |
[4] | HUANG Aimei, WENG Peixuan. Traveling wavefronts for a Lotka-Volterra system of type-K with delays[J]. Nonlinear Analysis: Real World Applications, 2013,14(2):1114-1129. |
[5] | LIN Guo, LI Wantong, MA Mingju. Travelling wave solutions in delayed reaction diffusion systems with applications to multi-species models[J]. Discrete Contin Dyn Syst Ser: B, 2010,13(2):393-414. |
[6] | HUANG Jianhua, ZOU Xingfu. Traveling wavefronts in diffusive and cooperative Lotka-Volterra systems with delays[J]. J Math Anal Appl, 2002,271(2):455-466. |
[7] | LI Wantong, LIN Guo, RUAN Shigui. Existence of travelling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems[J]. Nonlinearity, 2006, 19(6):1253-1273. |
[8] | HUANG Jianhua, ZOU Xingfu. Travelling wave solutions in delayed reaction diffusion systems with partial monotonicity[J]. Acta Math Appl Sin: English Series, 2006, 22(2):243-256. |
[9] | PAN Shuxia, LI Wantong, LIN Guo. Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications[J]. Z Angew Math Phys, 2009, 60(3):377-392. |