|
- 2015
赋权分数布朗运动的幂变差与应用
|
Abstract:
摘要: 利用赋权分数布朗运动的随机积分表示, 研究了赋权分数布朗运动的幂变差。利用所得结果, 给出了关于赋权分数布朗运动中参数b的估计。
Abstract: The power variation of weighted-fractional Brownian motion was considened by using its stochastic calculus representation. As an application, the estimate of parameter b was obtainted
[1] | YAN Litan, WANG Zhi, JING Huiting. Some path properties of weighted-fractional Brownian motion[J]. Stochastics: An International Journal of Probability and Stochastic Processes, 2014, 86(5):721-758. |
[2] | SHEN Guangjun, YAN Litan, CUI Jing. Berry-Esséen bounds and almost sure CLT for quadratic variation of weighted fractional Brownian motion[J]. Journal of Inequalities and Applications, 2013, 2013:275. |
[3] | CSáKI E, CS?RG?M, SHAO Q M. Fernique type inequalities and moduli of continuity for l<sup>2</sup>-valued Ornstein-Uhlenbeck processes[J]. Ann Inst Henri Poincaré Probab Statist, 1992, 28: 479-517. |
[4] | ADLER R J. An introduction to continuity extrema, and related topics general Gaussian processes[M]. IMS Bardour-Rice-Strawderman, 1990. |
[5] | KLEIN R, GINé E. On quadratic variation of processes with Gaussian increments[J]. Ann Probab, 1975, 3:716-721. |
[6] | LéVY P. Le movement Brownien plan[J]. Amer J Math, 1940, 62: 487-550. |
[7] | TALAGRAND M. Hausdorff measure of trajectories of multiparameter fractional Brownian motion[J]. Ann Probab, 1995, 23:767-775. |
[8] | WANG Wensheng. On p-variational of bifractional Brownian motion[J]. Appl Math J Chinese Univ, 2011, 26(2):127-141. |
[9] | MARCUS M B, ROSEN J. p-variation of the local times of symmetric stable processes and of Gaussian Processes with stationary increments[J]. Ann Probab, 1992, 20:1685-1713. |
[10] | MISHURA Y. Stochasic calculus for fractional Brownian motion and related processes[M]. New York: Springer-Verlag, 2008. |
[11] | BOJDECKI T, GOROSTIZA L G, TALARCZYK A. Self-similar stable processes arising from high density limits of occupation times of particle systems[J]. Potent Anal, 2008, 28:71-103. |