|
- 2017
关于Wigner-Yanase-Dyson斜信息的一些研究
|
Abstract:
摘要: 基于对Wigner-Yanase-Dyson斜信息和Wigner-Yanase关联的一些特性的研究, 给出了不同量子信道的Wigner-Yanase-Dyson斜信息。最后证明了Wigner-Yanase-Dyson斜信息的凹性。
Abstract: Based on the study of some properties of the Wigner-Yanase-Dyson skew information and the Wigner-Yanase correlation, the Wigner-Yanase-Dyson skew information is given for different quantum channels. Finally, the concavity with the Wigner-Yanase-Dyson skew information is proven
[1] | WIGNER E P, YANASE M M. Information contents of distributions[J]. Proceedings of the National Academy of Sciences of the United States of America, 1963, 49(6):910-918. |
[2] | DOU Yanni, DU Hongke. Generalizations of the Heisenberg and Schr?dinger uncertainty relations[J]. Journal of Mathematical Physics, 2013, 54, 103508. doi:10.1063/1.4825114. |
[3] | DOU Yanni, DU Hongke. Note on the Wigner-Yanase-Dyson skew information[J]. International Journal of Theoretical Physics, 2014, 53(3):952-958. |
[4] | YANAGI K. Uncertainty relation on Wigner-Yanase-Dyson skew information[J]. Journal of Mathematical Analysis and Applications, 2009, 365(1):12-18. |
[5] | YANAGI K. Wigner-Yanase-Dyson skew information and uncertainty relation[J]. Journal of Physics: Conference Series, 2010, 201(1), id: 012015. |
[6] | 李浩静, 陈峥立, 梁丽丽. 关于Schr?dinger不确定性关系的研究[J]. 山东大学学报(理学版), 2014, 49(6):67-73. LI Haojing, CHEN Zhengli, LIANG Lili. Note on the Schr?dinger uncertainty relation[J]. Journal of Shandong University(Natural Science), 2014, 49(6):67-73. |
[7] | CHEN Zhengli, LIANG Lili, LI Haojing, et al. A generalized uncertainty relation[J]. International Journal of Theoretical Physics, 2015, 54(8):2644-2651. |
[8] | CHEN Zhengli, LIANG Lili, LI Haojing, et al. Two generalized Wigner-Yanase skew information and their uncertainty relations[J]. Quantum Information Processing, 2016, 15(12):5107-5118. |
[9] | LUO Shunlong. Wigner-Yanase skew information vs. quantum fisher information[J]. Proceedings of the American Mathematical Society, 2003, 132(3):885-890. |
[10] | LUO Shunlong. Quantum discord for two-qubit systems[J]. Physical Review A, 2008, 77. doi: 10.1103/PhysRevA.77.042303. |
[11] | LUO Shunlong, FU Shuangshuang. Geometric measure of quantum discord[J]. Physics Review A, 2010, 82(3):118-129. |
[12] | LUO Shunlong, FU Shuangshuang. Quantifying correlations via the Wigner-Yanase skew information[J]. Physical Review A, 2012, 85. doi: 10.1103/PhysRevA.85.032117. |
[13] | LIEB E H. Convex trace functions and the Wigner-Yanase-Dyson conjecture[J]. Advances in Mathematics, 1973, 11(3):267-288. |
[14] | LUO Shunlong, ZHANG Zhengmin. An informational characterization of Schr?dingers uncertainty relations[J]. Journal of Statistical Physics, 2004, 114(5):1557-1576. |
[15] | LI Qian, CAO Huaixin, DU Hongke. A generalization of Schr?dingers uncertainty relation described by the Wigner-Yanase skew information[J]. Quantum Information Processing, 2015, 14(4):1513-1522. |