|
- 2017
双代数胚上的L-R smash积
|
Abstract:
摘要: 构造出双代数胚上的L-R smash积, 并给出例子。 作为应用, 证明了双代数胚上的双边smash积事实上为L-R smash积。
Abstract: The L-R smash product for the bialgebroid is constructed, and examples are given. As an application, it is proved that two-sided smash product is actually an L-R smash product
[1] | CHEN Q, WANG D. A duality theorem for L-R crossed product[J]. Filomat, 2016, 30: 1305-1313. |
[2] | KADISONA L, SZLACHANYI K. Bialgebroid actions on depth two extensions and duality[J]. Adv Math, 2003, 179:75-121. |
[3] | LU J H. Hopf algebroids and quantum groupoids[J]. Internat J Math, 1996, 7:47-70. |
[4] | PANAITE F, VAN OYSTAEYEN F. L-R smash product for(quasi-)Hopf algebras[J]. J Algebra, 2007, 309:168-191. |
[5] | BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae, symplectic Lie groups and symmetric spaces[J]. Pacific Journal of Mathematics, 2003, 230:41-58. |
[6] | BIELIAVSKY P, BONNEAU P, MAEDA Y. Universal deformation formulae for three-dimensional solvable Lie groups[C] // Quantum Field Theory and Noncommutative Geometry: Lecture Notes in Phys, Vol 662. Berlin: Springer, 2005: 127-141. |
[7] | BONNEAU P, GERSTENHABER M, GIAQUINTO A, et al. Quantum groups and deformation quantization: explicit approaches and implicit aspects[J]. J Math Phys, 2004, 45:3703-3741. |
[8] | BONNEAU P, STERNHEIMER D. Topological Hopf algebras, quantum groups and deformation quantization[C] // Hopf Algebras in Noncommutative Geometry and Physics: Lecture Notes in Pure and Appl Math, Vol 239. New York: Marcel Dekker, 2005: 55-70. |