全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

高阶非线性分数阶微分方程系统的多个正解
Multiple positive solutions of a system of high order nonlinear fractional differential equations

DOI: 10.6040/j.issn.1671-9352.0.2017.380

Keywords: 分数阶微分方程系统,Leggett-Williams不动点定理,积分边值条件,正解,
integral boundary value conditions
,positive solution,Leggett-Williams fixed point theorem,the system of fractional order differential equation

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 研究了一类具有积分边值条件的高阶非线性分数阶微分方程系统多个正解的存在性,主要运用Leggett-Williams不动点定理及Krasnoselskii锥上的不动点相关定理得出了该系统存在两个或三个正解的结果。
Abstract: The existence of multiple positive solutions for a system of high-order nonlinear fractional differential equations is studied. Two or three positive solutions are obtained for the system by using Leggett-Williams fixed point theorem and Krasnoselskiion cone

References

[1]  OLDHAM K B, SPANIER J. The fractional calculus[M]. New York: Academic Press, 1974.
[2]  KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and applications of fractional differential equations[M]. Amsterdam: Elsevier Science, 2006, 204(49-52):2453-2461.
[3]  GOODRICH C S. On discrete sequential fractional boundary value problems[J]. Journal of Mathematical Analysis and Applications, 2012, 385(1):111-124.
[4]  YUAN Chengjun. Two positive solutions for(<i>n</i>-1,1)-type semipositone integral boundary value problems for coupled systems of nonlinear fractional differential equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(2):930-942.
[5]  YANG Chen, ZHAI Chengbo. Uniqueness of positive solutions for a fractional differential equation via a fixed point theorem of a sum operator[J]. Electronic Journal of Differential Equations, 2012, 2012(70):808-826.
[6]  KILBAS A A, MARZAN S A. Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions[J]. Differential Equations, 2005, 41(1):84-89.
[7]  FENG Haixing, ZHAI Chengbo. Existence and uniqueness of positive solutions for a class of fractional differential equation with integral boundary conditions[J]. Nonlinear Analysis Modelling and Control, 2017, 22(2):160-172.
[8]  WANG Lin, LU Xinyi. Existence and uniqueness of solutions for a singular system of highter-order nonlinear fractional differential equations with integral boundary conditions[J]. Nonlinear Analysis: Modelling and Control, 2013, 31(31):493-518.
[9]  LIANG Sihua, ZHANG Jihui. The existence of three positive solutions for some nonlinear boundary value problems on the half-line[J]. Positivity, 2009, 13(2):443-457.
[10]  郭大钧. 非线性分析中的半序方法[M].济南:山东科学技术出版社,2000. GUO Dajun. Partial methods in nonlinear analysis[M]. Jinan: Shandong Science and Technology Press, 2000.
[11]  FERREIRA RAC. Positive solutions for a class of boundary value problems with fractional q-differences[J]. Pergamon Press, Inc, 2011, 61(2):367-373.
[12]  METZLER R, SCHICK W, KILIAN H, et al. Relaxation in filled polymers: a fractional calculus approach[J]. Journal of Chemical Physics, 1995, 103(16):7180-7186.
[13]  LAKSHMIKANTHAM V. Theory of fractional functional differential equations[J]. Nonlinear Analysis Theory Methods and Applications, 2008, 69(10):3337-3343.
[14]  FENG Wenquan, SUN Shurong, HAN Zhenlai, et al. Existence of solutions for a singular system of nonlinear fractional differential equations[J]. Computers and Mathematics with Applications, 2011, 62(3):1370-1378.
[15]  ZHAI Chengbo, YAN Weiping, YANG Chen. A sum operator method for the existence and uniqueness of positive solutions to Riemann-Liouville fractional differential equation boundary value problems[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(4):858-866.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133