|
- 2017
基于d-型函数的具有最优周期部分汉明相关的跳频序列
|
Abstract:
摘要: 基于d-型函数,提出了两类具有最优周期部分汉明相关的跳频序列的构造方法。研究表明,对于任意相关窗长,新构造的跳频序列都是最优的。
Abstract: Based on the d-function, two kinds of methods for constructing FH sequences with the optimal period partially Hamming correlation are proposed. The results show that the frequency hopping sequence are optimal for any correlation window length
[1] | FAN Cuiling, CAI Han, TANG Xiaohu. A combinatorial construction for strictly optimal Frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2016, 62(8):4769-4774. |
[2] | CAI Han, ZHOU Zhengchun, YANG Yang, et al. A New construction of Frequency-hopping sequences with optimal partial hamming correlation[J]. Information Theory IEEE Transactions on, 2014, 60(9):5782-5790. |
[3] | CAI Han, YANG Yang, ZHOU Zhengchun, et al. Strictly optimal Frequency-hopping sequence sets with optimal family sizes[J]. Information Theory IEEE Transactions on, 2015, 62(2):1087-1093. |
[4] | BAO Jingjun, JI Lijun. Frequency hopping sequences with optimal partial hamming correlation[J]. IEEE Transactions on Information Theory, 2016, 62(6):3768-3783. |
[5] | FAN Pingzhi, DARNELL M. Sequence design for communications applications[J]. Research Studies Press, 1996. |
[6] | GOLOMB S W, GONG G. Signal design for good correlation: For wireless communication, cryptography, and radar[M] // Signal design for good correlation for wireless communication, cryptography, and radar/. Cambridge University Press, 2005: xviii. |
[7] | ZHOU Zhengchun, TANG Xiaohu, NIU Xinhua, et al. New classes of Frequency-hopping sequences with optimal partial correlation[J]. Information Theory IEEE Transactions on, 2012, 58(1):453-458. |
[8] | NIU Xinhua, PENG Daiyuan, ZHOU Zhengchun. Frequency/time hopping sequence sets with optimal partial Hamming correlation properties[J]. Science China Information Sciences, 2012, 55(10):2207-2215. |
[9] | LEMPEL A, GREENBERGER H. Families of sequences with optimal Hamming-correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1):90-94. |
[10] | EUN Y C, JIN S Y, HONG Y P, et al. Frequency hopping sequences with optimal partial autocorrelation properties[J]. Information Theory IEEE Transactions on, 2004, 50(10):2438-2442. |
[11] | ZHOU Zhengchun, TANG Xiaohu, PENG Daiyuan, et al. New constructions for optimal sets of Frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2011, 57(6):3831-3840. |
[12] | GONG G, SONG H Y. Two-tuple-balance of non-binary sequences with ideal two-level autocorrelation[J]. 2006, 154(18):2590-2598. |