全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种解多目标优化问题的基于分解的人工蜂群算法
Novel artificial bee colony algorithm based on objective space decomposition for solving multi-objective optimization problems

DOI: 10.6040/j.issn.1671-9352.0.2018.002

Keywords: 多目标优化问题,目标空间分解,人工蜂群算法,搜索策略,
multi-objective optimization problems
,objective space decomposition,artificial bee colony algorithm,search strategy

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 在处理多目标优化问题时,如何平衡所得解集的分布性与收敛性是一个困难又重要的工作。为此,提出了解决该问题的一种基于目标空间分解的人工蜂群算法(MOABC/D)。首先采用一组方向向量将目标空间分解成一系列的子区域,并在每一个子区域至少保留一个解来保持解的分布性,其次提出一个基于分解的选择策略和2个基于信息交换的搜索策略来提高人工蜂群算法的搜索能力,并采用一个基于高斯分布的搜索策略来增强人工蜂群算法的搜索效率。为验证所提算法的性能,与8种同类算法在10个测试问题上进行比较。结果表明,本文所提算法得到的解集具有更好的收敛性能和分布性能。
Abstract: When solving multi-objective optimization problems, how to keep balance between convergence and distribution of solutions is a task which extremely important, but it is not easy. In this paper, we develop a novel artificial bee colony algorithm based on objective space decomposition for solving these issues. First, we divide the objective space into a series of sub-regions by a set of direction vectors, and one solution is at least chosen at each sub-region to maintain the diversity of the obtained solutions. To improve the convergence performance, we propose a search strategy based on information exchanging and two selection strategies based on decomposition respectively to enhance the search capacity of artificial bee colony algorithm. Moreover, a search strategy based on Gaussian distribution is employed to improve the effectiveness. The proposed algorithm is empirically compared with eight state-of-the-art multi-objective evolutionary algorithms on 10 benchmark problems. The comparative results demonstrate that the convergence and distribution performance of the proposed algorithm are superior to the compared algorithms

References

[1]  ZHANG Yong, GONG Dunwei, DING Zhonghai. A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch[J]. Information Sciences, 2012, 192:213-227.
[2]  ZITZLER E, LAUMANNS M, THIELE L. SPEA2: improving the strength Pareto evolutionary algorithm[M]. Zürich: Eidgen?ssische Technische Hochschule Zürich(ETH), für Technisch Informatik und Kommunikationsnetze(TIK), 2001: 103.
[3]  DEB K, MOHAN M,MISHRA S. Evaluating the <i>ε</i>-domination based multi-objective evolutionary algorithm for a quick computation of Pareto-optimal solutions[J]. Evolutionary Computation, 2005, 13(4):501-525.
[4]  彭虎, 吴志健, 周新宇. 基于精英区域学习的动态差分进化算法[J]. 电子学报,2014,42(8):1522-1530. PENG Hu, WU Zhijian, ZHOU Xinyu. Dynamic differential evolution algorithm based on elite local learning[J]. Acta Electronica Sinica, 2014, 42(8):1522-1530.
[5]  STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous space[J]. Journal of Global Optimization, 1997, 11(4):341-359.
[6]  CHEN Guolong, GUO Wenzhong, CHEN Yuzhong. A PSO-based intelligent decision algorithm for VLSI floorplanning[J]. Soft Compute, 2010, 14(12):1329-1337.
[7]  KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. Ksyseri: Erciyes University, 2005.
[8]  LI Bingdong, LI Binlong, TANG Ke, et al. Many-objective evolutionary algorithms: A survey[J]. ACM Computing Surveys, 2015, 48(1):13.
[9]  DEB K, PRATA A, AGARWAL S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
[10]  BADER J, ZITZLER E. HypE: an algorithm for fast hypervolume-based many-objective optimization[J]. Evolutionary Computation, 2001, 19(1):45-76.
[11]  WANG Ling, ZHOU Gang, XU Ye, et al. An enhanced Pareto-based artificial bee colony algorithm for the multi-objective flexible jobshop scheduling[J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(9/10/11/12):1111-1123.
[12]  YAHYA M, SAKA M P. Construction site layout planning using multi-objective artificial bee colony algorithm with Levy flights[J]. Automation in Construction, 2014, 38(5):14-29.
[13]  葛宇, 梁静. 一种多目标人工蜂群算法[J]. 计算机科学, 2015, 42(9):257-262. GE Yu, LIANG Jing. Multi-objective artificial bee colony algorithm[J]. Computer Science, 2015, 42(9):257-262.
[14]  DAI C,WANG Y, YE M. A new multi-objective particle swarm optimization algorithm based on decomposition[J]. Information Sciences, 2015, 325(c):541-557.
[15]  VELDHUIZEN D A V, LAMONT G B. Multiobjective evolutionary algorithm research: a history and analysis[R].Wright Patterson: Department of Electrical and Computer Engineering. Graduate School of Engineering, 1998.
[16]  HUO Ying, ZHUANG Yi, GU Jingjing, et al. Elite-guided multi-objective artificial bee colony algorithm[J]. Applied Soft Computing, 2015, 32(c):199-210.
[17]  YANG Shengxiang, LI Miqing, LIU Xiaohui, et al. A grid-based evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2013, 17(5):721-736.
[18]  ZITZLER E, KüNZLI S. Indicator-based selection in multiobjective search[J]. Lecture Notes in Computer Science, 2004, 3242:832-842.
[19]  ZHANG Qingfu, LI Hui. MOEA/D: a multiobjective evolutionary algorithm based on decomposition[J]. IEEE Transactions on Evolutionary Computation, 2007, 11(6):712-731.
[20]  QI Yutao, MA Xiaoliang, LIU Fang, et al. MOEA/D with adaptive weight adjustment[J]. Evolutionary Computation, 2014, 22(2):231-264.
[21]  KENNEDY J, EBERHART R.Particle swarm optimization[C] // Proceedings of IEEE International Conference On Neural Networks. Perth: IEEE, 1995: 1942-1948.
[22]  GUO Wenzhong, LIU Genggeng, CHEN Guolong, et al. A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning[J]. Frontiers of Computer Science, 2014, 8(2):203-216.
[23]  BAI Jing, LIU Hong. Multi-objective artificial bee algorithm based on decomposition by PBI method[J]. Applied Intelligence, 2016, 45(4):976-991.
[24]  GONZALEZ-ALVAREZ D L, VEGA-RODRIGUEZ M A, GOMEZ-PULIDO J A. Finding motifs in DNA sequences applying a multi-objective artificial bee colony algorithm[C] // Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Berlin: Springer, 2015: 89-100.
[25]  FALCóN-CARDONA J G,COELLO C A C. iMOACO: a new indicator-based multi-objective ant colony optimization algorithm for continuous search spaces[M]. Berlin: Springer International Publishing, 2016: 389-398.
[26]  SENDHOFF Bernhard, JIN Yaochu, TSANG Edward, et al. Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion[C]. Vancouver: IEEE Congress on Evolutionary Computation, 2006: 892-899.
[27]  MOORE J, CHAPMAN R. Application of particle swarm to multi-objective optimization[R]. Auburn: Department of Computer Science and Software Engineering, Auburn University, 1999.
[28]  DEB K. Multiobjective optimization using evolutionary algorithms[M]. New York: John Wiley & Sons, Inc, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133