全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

广义向量变分不等式的间隙函数与误差界
Gap functions and error bounds for generalized vector variational inequalities

DOI: 10.6040/j.issn.1671-9352.0.2016.469

Keywords: 间隙函数,广义向量变分不等式,误差界,广义强伪单调性,广义f-投影算子,
gap function
,error bound,generalized vector variational inequalities,generalized strong pseudomonotonicity,generalized f-projection

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 利用线性标量化方法构造广义向量变分不等式的间隙函数,并利用广义f-投影算子的性质验证了正则间隙函数。在广义强伪单调的条件下得到了误差界结论。
Abstract: Gap functions for generalized vector variational inequalities were established via linear scalarization approaches. By using some properties of generalized f-projection operators, the regularized gap function was verified. With the condition of the generalized strong pseudomonotonicity, error bounds were obtained

References

[1]  LI X, LI X S, HUANG N J. A generalized f-projection algorithm for inverse mixed variational inequalities[J]. Optimization Letters, 2014, 8(3):1063-1076.
[2]  NOOR M A. Merit functions for general variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2006, 316(2):736-752.
[3]  LI C Q, LI J. Merit functions and error bounds for constrained mixed set-valued variational inequalities via generalized f-projection operators[J]. Optimization, 2016, 65(8):1569-1584.
[4]  CHARITHA C, DUTTA J. Regularized gap functions and error bounds for vector variational inequalities[J]. Pacific Journal of Optimization, 2010, 6(3):497-510.
[5]  LI X B, ZHOU L W, HUANG N J. Gap functions and global error bounds for generalized mixed variational inequalities on hadamard mainifolds[J]. Journal of Optimization Theory and Applications, 2016, 168(3):830-849.
[6]  SOLODOV M V. Merit functions and error bounds for generalized variational inequalities[J]. Journal of Mathematical Analysis and Applications, 2003, 287(2):405-414.
[7]  SUN X K, CHAI Y. Gap functions and error bounds for generalized vector variational inequalities[J]. Optimization Letters, 2014, 8(5):1663-1673.
[8]  ZUO X, WEI H Z, CHEN C R. Continuity results and error bounds on pseudomonotone vector variational inequalities via scalarization[J]. Journal of Function Spaces, 2016(3):1-11.
[9]  LEE G M, KIM D S, LEE B S, et al. Vector variational inequality as a tool for studying vector optimization problems[J]. Nonlinear Analysis, 1998, 34:745-765.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133