|
- 2018
电池电极反应的新应用:分步法电解制氢气
|
Abstract:
摘要 可再生能源与电解水制氢技术的结合是实现可持续制氢的最佳途径. 然而,传统电解水技术中解决氢-氧同时、同步、同地产生的问题必须依赖于膜分离技术,大幅限制了氢-氧分离和氢气异地运输的灵活性,并阻碍了可再生能源(如风能、太阳能)与电解水技术的直接结合. 针对上述问题,作者课题组在近期提出了基于电池电极反应的分步法电解水制氢技术,即通过电池电极的可逆电化学反应将现有电解水过程拆分为制氢和制氧分立步骤,实现在无膜条件下氢气和氧气的分时、分地交替制备,提升了电解水制氢的灵活性,促进了可再生能源向氢能的直接转化. 本文将介绍这一新技术的研究进展,并分析这一技术的优点和面临的挑战
[1] | Li F L, Shao Q, Huang X Q, et al. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis[J]. Angewandte Chemie-International Edition, 2018, 57(7): 1888-1892. |
[2] | 18 7-192. |
[3] | Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2016, 55(17): 5277-5281. |
[4] | You B, Liu X, Jiang N, et al. General strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization[J]. Journal of the American Chemical Society, 2016, 138, 41: 13639-13646. |
[5] | Landman A, Dotan H, Shter G E, et al. Photoelectrochemical water splitting in separate oxygen and hydrogen cells[J]. Nature Materials, 2017, 16(6): 645-651. |
[6] | Ma Y Y, Dong X L, Wang R H, et al. Combining water reduction and liquid fuel oxidization by nickel hydroxide for flexible hydrogen production[J]. Energy Storage Materials, 2018, 11: 260-266. |
[7] | Muench S, Wild A, Friebe C, et al. Polymer-based organic batteries[J]. Chemical Reviews, 2016, 116: 9438-9484. |
[8] | Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017, 16(8): 841-848. |
[9] | Dong X L, Yu H C, Ma Y Y, et al. All-organic rechargeable battery with reversibility supported by “water-in-salt”electrolyte[J]. Chemistry-A European Journal, 2017, 23(11): 2560-2565. |
[10] | Hou M Y, Chen L, Guo Z W, et al. A clean and membrane-free chlor-alkali process with decoupled Cl2 and H2/NaOH production[J]. Nature Communications, 2018, 9: 438. |
[11] | Xu W W, Lu Z Y, Wan P B, et al. High-performance water electrolysis system with double nanostructured superaerophobic electrodes[J]. Small, 2016, 12(18): 2492-2498. |
[12] | Kanan M W, Nocera D G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+[J]. Science, 2008, 321(5892): 1072-1075. |
[13] | Yang T L(杨太来), Dong W Y(董文燕), Yang H M(杨慧敏), et al. Preparation and properties of binary oxides CoxCr1-xO3/2 electrocatalysts for oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2015, 21(2): |
[14] | Wu Z X(吴则星), Wang J(王杰), Guo J P(郭军坡), et al. Recent progresses in molybdenum-based electrocatalysts for the hydrogen evolution reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 192-204. |
[15] | Berger A, Segalman R A, Newman J. Material requirements for membrane separators in a water-splitting photoelectrochemical cell[J]. Energy & Environmental Science, 2014, 7(4): 1468-1476. |
[16] | Chen P, Xu K, Fang Z W, et al. Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(49): 14710-14714. |
[17] | Chandross E A. Shining a light on solar water splitting[J]. Science, 2014, 344(6183): 469. |
[18] | Rothschild A, Dotan H. Beating the efficiency of photovoltaics-powered electrolysis with tandem cell photoelectrolysis[J]. ACS Energy Letters, 2017, 2(1): 45-51. |
[19] | Subbaraman R, Tripkovic D, Strmcnik D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. |
[20] | Voiry D, Yamaguchi H, Li J W, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution[J]. Nature Materials, 2013, 12(9): 850-855. |
[21] | Wang Y Y, Zhang Y Q, Liu Z J, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie International Edition, 2017, 56(21): 5867-5871. |
[22] | Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014, 345(6202): 1326-1330. |
[23] | Chen L, Dong X L, Wang Y G, et al. Separating hydrogen and oxygen evolution in alkaline water electrolysis using nickel hydroxide[J]. Nature Communications, 2016, 7: 11741. |
[24] | Barbir F. PEM electrolysis for production of hydrogen from renewable energy sources[J]. Solar Energy, 2004, 78(5): 661-669. |
[25] | Pinhassi R I, Kallmann D, Saper G, et al. Hybrid bio-photo-electro-chemical cells for solar water splitting[J]. Nature Communications, 2016, 7: 12552. |
[26] | Ma Y Y, Dong X L, Wang Y G, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018, 57(11): 2904-2908. |
[27] | Lakshmanan S, Murugesan T. The chlor-alkali process: Work in progress[J]. Clean Technologies and Environmental Policy, 2013, 16(2): 225-234. |
[28] | Fauvarque J. The chlorine industry[J]. Pure and Applied Chemistry, 1996, 68(9): 1713-1720. |
[29] | Schr?der M, Kailasam K, Borgmeyer J, et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation[J]. Energy Technology, 2015, 3(10): 1014-1017. |
[30] | Yan D F, Dou S, Li T, et al. Electropolymerized supermolecule derived N, P co-doped carbon nanofiber networks as a highly efficient metal-free electrocatalyst for the hydrogen evolution reaction[J]. Journal of Material Chemistry A, 2016, 4(36): 13726-13730. |
[31] | Tang C, Cheng N Y, Pu Z H, et al. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015, 54(32): 9351-9355. |
[32] | Reece S Y, Hamel J A, Sung K, et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts[J]. Science, 2011, 334(6056): 645-648. |
[33] | Gandia L M, Oroz R, Ursua A, et al. Renewable hydrogen production: Performance of an alkaline water electrolyzer working under emulated wind conditions[J]. Energy & Fuels, 2007, 21(3): 1699-1706. |