|
- 2018
有机氧化还原液流电池的研究进展
|
Abstract:
摘要 氧化还原液流电池(简称液流电池)是一种正在积极研制开发的新型大容量电化学储能装置,其活性物质是流动的电解质溶液,最显著的特点是规模化蓄电. 在广泛利用可再生能源的呼声高涨形势下,可以预见液流电池将迎来一个快速发展的时期. 氧化还原活性物质是液流电池能源转化的载体,也是液流电池中最核心的部分.传统液流电池利用无机材料作为活性物质,然而,无机材料成本高、毒性、资源有限、形成枝晶和电化学活性低等缺点限制了液流电池的大规模应用. 有机活性物质由于具有成本低、“绿色”、资源丰富、分子能级易于调节和电化学反应快等优点,引起了国内外的广泛关注. 近年来,有机液流电池的性能得到快速提升,一系列有机活性物质相继被开发出来. 本文梳理了近年来有机液流电池的研究进展. 首先简要介绍了液流电池的应用领域和技术特点;然后根据电解液种类的不同,详细讨论了有机活性物质在水系和非水系液流电池的应用情况;最后展望了有机液流电池走向实际应用所面临的挑战和潜在研究方向
[1] | Weitemeyer S, Kleinhans D, Vogt T, et al. Integration of renewable energy sources in future power systems: The role of storage[J]. Renewable Energy, 2015, 75: 14-20. |
[2] | Soloveichik G L. Battery technologies for large-scale stationary energy storage[M]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 503-527. |
[3] | Badwal S P S, Giddey S S, Munnings C, et al. Emerging electrochemical energy conversion and storage technologies[J]. Frontiers in Chemistry, 2014, 2: UNSP 79. |
[4] | Winsberg J, Hagemann T, Janoschka T, et al. Redox-flow batteries: From metals to organic redox-active materials[J]. Angewandte Chemie International Edition, 2017, 56(3): 686-711. |
[5] | Lai Q Z, Zhang H M, Li X F, et al. A novel single flow zinc-bromine battery with improved energy density[J]. Journal of Power Sources, 2013, 235: 1-4. |
[6] | Dong Q F(董全峰), Zhang H M(张华民), Jin M G(金明钢), et al. Research progresses in a flow redox battery[J]. Journal of Electrochemistry(电化学), 2005, 11(3): 237-243. |
[7] | Zhang L Q, Zhang H M, Lai Q Z, et al. Development of carbon coated membrane for zinc/bromine flow battery with high power density[J]. Journal of Power Sources, 2013, 227: 41-47. |
[8] | Cheng J, Zhang L, Yang Y S, et al. Preliminary study of single flow zinc-nickel battery[J]. Electrochemistry Communications, 2007, 9(11): 2639-2642. |
[9] | Liu Q, Sleightholme A E S, Shinkle A A, et al. Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries[J]. Electrochemistry Communications, 2009, 11(12): 2312-2315. |
[10] | Takechi K, Kato Y, Hase Y. A highly concentrated catholyte based on a solvate ionic liquid for rechargeable flow batteries[J]. Advanced Materials, 2015, 27(15): 2501-2506. |
[11] | Friedl J, Lebedeva M A, Porfyrakis K, et al. All fullerene-based cells for non-aqueous redox flow batteries[J]. Journal of the American Chemical Society, 2017, 140(1):401-405. |
[12] | Duan W, Huang J, Kowalski J A, et al. “Wine-dark sea” in an organic flow battery: Storing negative charge in 2, 1, 3-benzothiadiazole radicals leads to improved cyclability[J]. ACS Energy Letters, 2017, 2(5): 1156-1161. |
[13] | Xu Y, Wen Y H, Cheng J, et al. A study of tiron in aqueous solutions for redox flow battery application[J]. Electrochimica Acta, 2010, 55(3): 715-720. |
[14] | Yang B, Hoober-Burkhardt L, Krishnamoorthy S, et al. High-performance aqueous organic flow battery with quinone-based redox couples at both electrodes[J]. Journal of The Electrochemical Society, 2016, 163(7): A1442-A1449. |
[15] | Lin K, Gómez-Bombarelli R, Beh E S, et al. A redox-flow battery with an alloxazine-based organic electrolyte[J]. Nature Energy, 2016, 1(9): 16102-16109. |
[16] | Hu B, Seefeldt C, DeBruler C, et al. Boosting the energy efficiency and power performance of neutral aqueous organic redox flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(42): 22137-22145. |
[17] | Janoschka T, Martin N, Hager M D, et al. An aqueous redox-flow battery with high capacity and power: The TEMPTMA/MV system[J]. Angewandte Chemie International Edition, 2016, 55(46): 14427-14430. |
[18] | Luo J, Hu B, Debruler C, et al. A π-conjugation extended viologen as a two-electron storage anolyte for total organic aqueous redox flow batteries[J]. Angewandte Chemie-International Edition, 2018, 57(1): 231-235. |
[19] | Brushett F R, Vaughey J T, Jansen A N. An all-organic non-aqueous lithium-ion redox flow battery[J]. Advanced Energy Materials, 2012, 2(11): 1390-1396. |
[20] | Braff W A, Mueller J M, Trancik J E. Value of storage technologies for wind and solar energy[J]. Nature Climate Change, 2016, 6(10): 964-969. |
[21] | Rugolo J, Aziz M J. Electricity storage for intermittent renewable sources[J]. Energy & Environmental Science, 2012, 5(5): 7151-7160. |
[22] | Skyllas-Kazacos M, Chakrabarti M H, Hajimolana S A, et al. Progress in flow battery research and development[J]. Journal of The Electrochemical Society, 2011, 158(8): R55-R79. |
[23] | Li B, Nie Z M, Vijayakumar M, et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery[J]. Nature Communications, 2015, 6: 6303. |
[24] | Ito Y, Nyce M, Plivelich R, et al. Zinc morphology in zinc-nickel flow assisted batteries and impact on performance[J]. Journal of Power Sources, 2011, 196(4): 2340-2345. |
[25] | Gong K, Ma X, Conforti K M, et al. A zinc-iron redox-flow battery under $100 per kWh of system capital cost[J]. Energy & Environmental Science, 2015, 8(10): 2941-2945. |
[26] | Rychcik M, Skyllas-Kazacos M. Characteristics of a new all-vanadium redox flow battery[J]. Journal of Power Sources, 1988, 22(1): 59-67. |
[27] | Wang X L(王晓丽), Zhang Y(张宇), Zhang H M(张华民). Latest progresses in vanadium flow battery technologies and applications[J]. Journal of Electrochemistry(电化学), 2015, 21(5): 433-440. |
[28] | Viswanathan V, Crawford A, Stephenson D, et al. Cost and performance model for redox flow batteries[J]. Journal of Power Sources, 2014, 247: 1040-1051. |
[29] | Huskinson B, Rugolo J, Mondal S K, et al. A high power density, high efficiency hydrogen-hlorine regenerative fuel cell with a low precious metal content catalyst[J]. Energy & Environmental Science, 2012, 5(9): 8690-8698. |
[30] | Yeo R S, McBreen J. Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells[J]. Journal of The Electrochemical Society, 1979, 126(10): 1682-1687. |
[31] | Gerhardt M R, Beh E S, Tong L, et al. Comparison of capacity retention rates during cycling of quinone-bromide flow batteries[J]. MRS Advances, 2017, 2(8): 431-438. |
[32] | Dincer I. Renewable energy and sustainable development: A crucial review[J]. Renewable and Sustainable Energy Reviews, 2000, 4(2): 157-175. |
[33] | Lund H. Renewable energy strategies for sustainable development[J]. Energy, 2007, 32(6): 912-919. |
[34] | Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: A battery of choices[J]. Science, 2011, 334(6058): 928-935. |
[35] | Wei X L, Pan W X, Duan W T, et al. Materials and systems for organic redox flow batteries: Status and challenges[J]. ACS Energy Letters, 2017, 2(9): 2187-2204. |
[36] | Butler P, Miller J L, Taylor P A. Energy storage opportunities analysis phase ii final report a study for the DOE energy storage systems program[J]. Sandia National Laboratories, 2002, 60: 24. |
[37] | Noack J, Roznyatovskaya N, Herr T, et al. The chemistry of redox-flow batteries[J]. Angewandte Chemie International Edition, 2015, 54(34): 9776-9809. |
[38] | Xie C X, Duan Y Q, Xu W B, et al. A low-cost neutral zinc-iron flow battery with high energy density for stationary energy storage[J]. Angewandte Chemie International Edition, 2017, 56(47): 14953-14957. |
[39] | Wei X, Xu W, Vijayakumar M, et al. TEMPO-based catholyte for high-energy density nonaqueous redox flow batteries[J]. Advanced Materials, 2014, 26(45): 7649-7653. |
[40] | Gong K, Xu F, Grunewald J B, et al. All-soluble all-iron aqueous redox-flow battery[J]. ACS Energy Letters, 2016, 1(1): 89-93. |
[41] | Huskinson B, Marshak M P, Suh C, et al. A metal-free organic-inorganic aqueous flow battery[J]. Nature, 2014, 505(7482): 195-198. |
[42] | Hu B, DeBruler C, Rhodes Z, et al. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage[J]. Journal of the American Chemical Society, 2017, 139(3): 1207-1214. |
[43] | Janoschka T, Martin N, Martin U, et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials[J]. Nature, 2015, 527(7576): 78-81. |
[44] | Wang W, Luo Q T, Li B, et al. Recent progress in redox flow battery research and development[J]. Advanced Functional Materials, 2013, 23(8): 970-986. |
[45] | Huang J, Cheng L, Assary R S, et al. Liquid catholyte molecules for nonaqueous redox flow batteries[J]. Advanced Energy Materials, 2015, 5(6): 1401782. |
[46] | Hagemann T, Winsberg J, H?upler B, et al. A bipolar nitronyl nitroxide small molecule for an all-organic symmetric redox-flow battery[J]. NPG Asia Materials, 2017, 9(1): e340. |
[47] | Ma T, Pan Z, Miao L C, et al. Porphyrin-based symmetric redox flow batteries towards cold-climate energy storage[J]. Angewandte Chemie International Edition, 2018, 57(12): 3158-3162. |
[48] | Duan W, Vemuri R S, Milshtein J D, et al. A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR[J]. Journal of Materials Chemistry A, 2016, 4(15): 5448-5456. |
[49] | Schnucklake M, Kuecken S, Fetyan A, et al. Salt-templated porous carbon-carbon composite electrodes for application in vanadium redox flow batteries[J]. Journal of Materials Chemistry A, 2017, 5(48): 25193-25199. |
[50] | He Z X, Jiang Y Q, Li Y H, et al. Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery[J]. Carbon, 2018, 127: 297-304. |
[51] | Lin G, Chong P Y, Yarlagadda V, et al. Advanced hydrogen-bromine flow batteries with improved efficiency, durability and cost[J]. Journal of The Electrochemical Society, 2016, 163(1): A5049-A5056. |
[52] | Ding Y, Yu G. The promise of environmentally benign redox flow batteries by molecular engineering[J]. Angewandte Chemie International Edition, 2017, 56(30): 8614-8616. |
[53] | Wei X, Xu W, Huang J, et al. Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery[J]. Angewandte Chemie International Edition, 2015, 54(30): 8684-8687. |
[54] | Sevov C S, Hickey D P, Cook M E, et al. Physical organic approach to persistent, cyclable, low-potential electrolytes for flow battery applications[J]. Journal of the American Chemical Society, 2017, 139(8): 2924-2927. |
[55] | Wei X L, Duan W T, Huang J H, et al. A high-current, stable nonaqueous organic redox flow battery[J]. ACS Energy Letters, 2016, 1(4): 705-711. |
[56] | Winsberg J, Hagemann T, Muench S, et al. Poly-(boron-dipyrromethene)—A redox-active polymer class for polymer redox-flow batteries[J]. Chemistry of Materials, 2016, 28(10): 3401-3405.. |
[57] | Li H(李华), Chang S W(常守文), Yan C W(严川伟). Research progress on electrode material in all-vanadium redox battery[J]. Journal of Electrochemistry(电化学), 2005, 8(3): 257-262. |
[58] | Chen Q, Gerhardt M R, Hartle L, et al. A quinone-bromide flow battery with 1 W/cm2 power density[J]. Journal of The Electrochemical Society, 2016, 163(1): A5010-A5013. |
[59] | Yang B, Hoober-Burkhardt L, Wang F, et al. An inexpensive aqueous flow battery for large-scale electrical energy storage based on water-soluble organic redox couples[J]. Journal of The Electrochemical Society, 2014, 161(9): A1371-A1380. |
[60] | Lin K, Chen Q, Gerhardt M R, et al. Alkaline quinone flow battery[J]. Science, 2015, 349(6255): 1529-1532. |
[61] | Beh E S, De Porcellinis D, Gracia R L, et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention[J]. ACS Energy Letters, 2017, 2(3): 639-644. |
[62] | Leung P, Li X, De León C P, et al. Progress in redox flow batteries, remaining challenges and their applications in energy storage[J]. RSC Advances, 2012, 2(27): 10125-10156. |
[63] | Li Z, Li S, Liu S Q, et al. Electrochemical properties of an all-organic redox flow battery using 2, 2, 6, 6-tetramethyl-1-piperidinyloxy and N-methylphthalimide[J]. Electrochemical and Solid-State Letters, 2011, 14(12): A171-A173. |
[64] | Potash R A, McKone J R, Conte S, et al. On the benefits of a symmetric redox flow battery[J]. Journal of The Electrochemical Society, 2016, 163(3): A338-A344. |
[65] | Winsberg J, Stolze C, Muench S, et al. TEMPO/phenazine combi-molecule: A redox-active material for symmetric aqueous redox-flow batteries[J]. ACS Energy Letters, 2016, 1(5): 976-980. |
[66] | Jacobson M Z, Delucchi M A. Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials[J]. Energy policy, 2011, 39(3): 1154-1169. |
[67] | Thaller L H. Electrically rechargeable redox flow cell: U.S. Patent 3,996,064[P]. 1976. |
[68] | Xue F Q, Wang Y L, Wang W H, et al. Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery[J]. Electrochimica Acta, 2008, 53(22): 6636-6642. |
[69] | Wikipedia, The Free Encyclopedia. Vanadium redox battery[Eb/OL]. https://en.wikipedia.org/wiki/Vanadium_redox_battery. |
[70] | Livshits V, Ulus A, Peled E. High-power H2/Br2 fuel cell[J]. Electrochemistry Communications, 2006, 8(8): 1358-1362. |
[71] | Yang Z J, Tong L C, Tabor D P, et al. Alkaline benzoquinone aqueous flow battery for large-scale storage of electrical energy[J]. Advanced Energy Materials, 2018,8(8): UNSP 1702056. |
[72] | Liu T B, Wei X L, Nie Z M, et al. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte[J]. Advanced Energy Materials, 2016, 6(3): 1501449. |
[73] | Heiland N, Cidarér C, Rohr C, et al. Design and evaluation of a boron dipyrrin electrophore for redox flow batteries[J]. ChemSusChem, 2017, 10(21): 4215-4222. |
[74] | Deng Q, Huang P, Zhou W X, et al. A high-performance composite electrode for vanadium redox flow batteries[J]. Advanced Energy Materials, 2017, 7(18): 1700461. |
[75] | Melke J, Jakes P, Langner J, et al. Carbon materials for the positive electrode in all-vanadium redox flow batteries[J]. Carbon, 2014, 78: 220-230. |