全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

纳米尺度扫描电化学显微镜的探针制备及在电催化氧和氢反应研究中的应用
Preparation of Nanoprobes and Their Possible Applications in Nanoscale Scanning Electrochemical Microscopy for Studying Electrocatalytic Oxygen and Hydrogen Reactions

DOI: 10.13208/j.electrochem.180141

Keywords: 扫描电化学显微镜,纳米探针,氧反应,氢反应,燃料电池,
scanning electrochemical microscopy
,nanoprobe,oxygen reaction,hydrogen reaction,fuel cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 扫描电化学显微镜是一种在检测样品表面物理形貌的同时能提供丰富的电化学信息的扫描探针技术,由于超微电极的引入,它可以高时空分辨率地探究各类样品的物理形貌和电化学性能之间的构效关系. 随着现代纳米科技的不断发展,扫描探针的尺寸也逐渐从亚微米发展到纳米级别. 与此同时,高效优选各类氧反应和氢反应电催化材料,明晰其电化学反应过程和性能是二十一世纪绿色新能源转换存储系统(如可再生燃料电池、金属空气电池等)的重要研究方向. 本文首先概括了可应用于扫描电化学显微镜的纳米级扫描探针的制备及发展,之后着重介绍了近四年纳米尺度扫描电化学显微镜在电催化氧反应和氢反应研究中的一些最新研究进展. 最后以点窥面,对未来纳米尺度扫描电化学显微镜的未来发展趋势作了展望

References

[1]  Lazenby R A, McKelvey K, Unwin P R. Hopping intermittent contact-scanning electrochemical microscopy (HIC-SECM): Visualizing interfacial reactions and fluxes from surfaces to bulk solution[J]. Analytical Chemistry, 2013, 85(5): 2937-2944.
[2]  Nebel M, Erichsen T, Schuhmann W. Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts[J]. Beilstein Journal of Nanotechnology, 2014, 5(1): 141-151.
[3]  Botz A J R, Nebel M, Rincon R A, et al. Onset potential determination at gas-evolving catalysts by means of constant-distance mode positioning of nanoelectrodes[J]. Electrochimica Acta, 2015, 179: 38-44.
[4]  Kim J, Renault, C, Nioradze N, et al. Nanometer scale scanning electrochemical microscopy instrumentation[J]. Analytical Chemistry, 2016, 88(20): 10284-10289.
[5]  Cox J T, Zhang B. Nanoelectrodes: Recent advances and new directions[J]. Annual Review of Analytical Chemistry, 2012, 5(1): 253-272.
[6]  Oja S M, Fan Y, Armstrong C M, et al. Nanoscale electrochemistry revisited[J]. Analytical Chemistry, 2015, 88(1): 414-430.
[7]  Kang M, Momotenko D, Page A, et al. Frontiers in nano-scale electrochemical imaging: Faster, multifunctional, and ultrasensitive[J]. Langmuir, 2016, 32(32): 7993-8008.
[8]  Takahashi Y. Development of high-resolution scanning electrochemical microscopy for nanoscale topography and electrochemical simultaneous imaging[J]. Electrochemistry, 2016, 84(9): 662-666.
[9]  Shen M, Qu Z Z, DesLaurier J, et al. Single synaptic observation of cholinergic neurotransmission on living neurons: Concentration and dynamics[J]. Journal of The American Chemical Society, 2018, 140(25): 7764-7768.
[10]  Chen X X(陈星星). Mini-review: Possible applications of scanning electrochemical microscopy (SECM) in characterizations of oxygen reduction reaction and oxygen evolution reaction[J]. Journal of Electrochemistry(电化学), 2016, 22(2): 113-122.
[11]  Yu Y, Sun T, Mirkin M V. Toward more reliable measurements of electron-transfer kinetics at nanoelectrodes: Next approximation[J]. Analytical Chemistry, 2016, 88(23): 11758-11766.
[12]  Kim J, Renault C, Nioradze N, et al. Electrocatalytic activity of individual Pt nanoparticles studied by nanoscale scanning electrochemical microscopy[J]. Journal of The American Chemical Society, 2016, 138(27): 8560-8568.
[13]  Zhang B, Galusha J, Shiozawa P G, et al. Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size[J]. Analytical Chemistry, 2007, 79(13): 4778-4787.
[14]  Bonazza H L, Fernandez J L. An efficient method for fabrication of disk-shaped scanning electrochemical microscopy probes with small glass-sheath thicknesses[J]. Journal of Electroanalytical Chemistry, 2010, 650(1): 75-81.
[15]  Etienne M, Moulin J P, Gourhand S. Accurate control of the electrode shape for high resolution shearforce regulated SECM[J]. Electrochimica Acta, 2013, 110(6): 16-21.
[16]  Jena B K, Percival S J, Zhang B. Au disk nanoelectrode by electrochemical deposition in a nanopore[J]. Analytical Chemistry, 2010, 82(15): 6737-6743.
[17]  Velmurugan J, No?l J M, Mirkin M V. Nucleation and growth of mercury on Pt nanoelectrodes at different overpotentials[J]. Chemical Science, 2014, 5(1): 189-194.
[18]  Schulte A, Chow R H. A simple method for insulating carbon-fiber microelectrodes using anodic electrophoretic deposition of paint[J]. Analytical Chemistry, 1996, 68(17): 3054-3058.
[19]  Singhal R, Orynbayeva Z, Sundaram R V K, et al. Multifunctional carbon-nanotube cellular endoscopes[J]. Nature Nanotechnology, 2011, 6(1): 57-64.
[20]  Yum K, Cho H N, Hu J, et al. Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments[J]. ACS Nano, 2007, 1(5): 440-448.
[21]  Schrlau M G, Falls E M, Ziober B L, et al. Carbon nanopipettes for cell probes and intracellular injection[J]. Nanotechnology, 2008, 19(1): 15101.
[22]  Singhal R, Bhattacharyya S, Orynbayeva Z, et al. Small diameter carbon nanopipettes[J]. Nanotechnology, 2010, 21(1): 15304.
[23]  Hao R, Zhang B. Nanopipette-based electroplated nanoelectrodes[J]. Analytical Chemistry, 2015, 88(1): 614-620.
[24]  Cai C, Tong Y, Mirkin M V. Probing rapid ion transfer across a nanoscopic liquid-liquid interface[J]. Journal of Physical Chemistry B, 2004, 108(46): 17872-17878.
[25]  McKelvey K, Nadappuram B P, Actis P, et al. Fabrication, characterization, and functionalization of dual carbon electrodes as probes for scanning electrochemical microscopy (SECM)[J]. Analytical Chemistry, 2013, 85(15): 7519-7526.
[26]  Gullo M R, Frederix P L, Akiyama T, et al. Characterization of microfabricated probes for combined atomic force and high-resolution scanning electrochemical microscopy[J]. Analytical Chemistry, 2006, 78(15): 5436-5442.
[27]  Rodriguez R D, Anne A, Cambril E, et al. Optimized hand fabricated AFM probes for simultaneous topographical and electrochemical tapping mode imaging[J]. Ultramicroscopy, 2011, 111(8): 973-981.
[28]  Kim J, Kim B K, Cho S K, et al. Tunneling ultramicroelectrode: Nanoelectrodes and nanoparticle collisions[J]. Journal of The American Chemical Society, 2014, 136(23): 8173-8176.
[29]  O’Connell M A, Lewis J R, Wain A J. Electrochemical imaging of hydrogen peroxide generation at individual gold nanoparticles[J]. Chemical Communications, 2015, 51(51): 10314-10317.
[30]  Du X J(杜晓静), Xu F(徐峰), Li F(李菲), et al. New application of scanning electrochemical microscopy in characterization of hydrogel microwell arrays[J]. Scientia Sinica Chimica (中国科学:化学), 2014, 44(11): 1814-1822
[31]  Wang Y J(王玉娇), Wang W(王玮), Feng P Y(冯平源), et al. Research progresses of the analytical applications of scanning electrochemical microscopy in Li-ion batteries[J]. Energy Storage Science and Technology(储能科学与技术),2017, 6(1): 1-10.
[32]  Park H S, Jang J H. Applications of scanning electrochemical micrsocopy (SECM) coupled to atomic force microscopy with sub-micrometer spatial resolution to the development and discovery of electrocatalysts[J]. Journal of Electrochemical Science and Technology, 2016, 7(4): 316-326.
[33]  Kai T H, Zoski C G, Bard A J. Scanning electrochemical microscopy at nanometer level[J]. Chemical Communications, 2018, 54(16): 1934-1947.
[34]  Izquierdo J, Knittel P, Kranz C. Scanning electrochemical microscopy: An analytical perspective[J]. Analytical Bioanalytical Chemistry, 2018, 410(2): 307-314.
[35]  Matsue T. Bioimaging with micro/nanoelectrode systems[J]. Analytical Sciences, 2013, 29(2): 171-179.
[36]  Shao Y, Mirkin M V, Fish G, et al. Nanometer-sized electrochemical sensors[J]. Analytical Chemistry, 1997, 69(8): 1627-1634.
[37]  Liu Y Z, Li M N, Zhang F, et al. Development of Au disk nanoelectrode down to 3 nm in radius for detection of dopamine release from a single cell[J]. Analytical Chemistry, 2015, 87(11): 5531-5538.
[38]  No?l J M, Velmurugan J, Gokme拶e E, et al. Fabrication, characterization, and chemical etching of Ag nanoelectrodes[J]. Journal of Solid State Electrochemistry, 2013, 17(2): 385-389.
[39]  Sun P, Mirkin M V. Scanning electrochemical microscopy with slightly recessed nanotips[J]. Analytical Chemistry, 2007, 79(15): 5809-5816.
[40]  Bae J H, Yu Y, Mirkin M V. Recessed nanoelectrodes for nanogap voltammetry[J]. ChemElectroChem, 2016, 3(12): 2043-2047.
[41]  Velmurugan J, Mirkin M V. Fabrication of nanoelectrodes and metal clusters by electrodeposition[J]. ChemPhysChem, 2010, 11(13): 3011-3017.
[42]  Holt K B, Hu J P, Foord J S. Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments[J]. Analytical Chemistry, 2007,79(6): 2556-2561.
[43]  Xin S L(辛淑莉), Sun Y(孙瑶), Yuan D(袁丁), et al. Applications of scanning electrochemical microscoy in photoelectrochemistry[J]. Scientia Sinica(Chimica)(中国科学:化学), 2017, 47(9): 1085-1101.
[44]  Velmurugan J, Sun P, Mirkin M V. Scanning electrochemical microscopy with gold nanotips: The effect of electrode material on electron transfer rates[J]. Journal of Physical Chemistry C, 2009, 113(1): 459-464.
[45]  Katemann B B, Schuhmann W. Fabrication and characterization of needle-type Pt-disk nanoelectrodes[J]. Electroanalysis, 2002, 14(14): 22-28.
[46]  Li Y X, Bergman D, Zhang B. Preparation and electrochemical response of 1-3 nm Pt disk electrodes[J]. Analytical Chemistry, 2009, 81(13): 5496-5502.
[47]  Bach C E, Nichols R J, Beckmann W, et al. Effective insulation of scanning tunneling microscopy tips for electrochemical studies using an electropainting method[J]. Vida Rural, 1993, 140(140): 1281-1284.
[48]  Sun P, Zhang Z, Guo J D, et al. Fabrication of nanometer-sized electrodes and tips for scanning electrochemical microscopy[J]. Analytical Chemistry, 2001, 73(21): 5346-5351.
[49]  Takahashi Y, Shevchuk A I, Novak P, et al. Topographical and electrochemical nanoscale imaging of living cells using voltage-switching mode scanning electrochemical microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(29): 11540-11545.
[50]  Actis P, Tokar S, Clausmeyer J, et al. Electrochemical nanoprobes for single-cell analysis[J]. ACS Nano, 2014, 8(1): 875-884.
[51]  Vitol E A, Schrlau M G, Bhattacharyya S, et al. Effects of deposition conditions on the structure and chemical properties of carbon nanopipettes[J]. Chemical Vapor Deposition, 2009, 15(7/9): 204-208.
[52]  Yu Y, No?l J M, Mirkin M V. Carbon pipette-based electrochemical nanosampler[J]. Analytical Chemistry, 2014, 86(7): 3365-3372.
[53]  Zhu X Y, Qiao Y H, Zhang X, et al. Fabrication of metal nanoelectrodes by interfacial reactions[J]. Analytical Chemistry, 2014, 86(14): 7001-7008.
[54]  Wang F F, Wang W, He X, et al. Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution[J]. Science China-Chemistry, 2017, 60(5): 649-655.
[55]  Morris C, Friedman A K, Baker L A. Applications of nanopipettes in the analytical sciences[J]. Analyst, 2010, 135(9): 2190-2202.
[56]  Takahashi Y, Shevchuk A I, Novak P, et al. Simultaneous noncontact topography and electrochemical imaging by SECM/SICM featuring ion current feedback regulation[J]. Journal of the American Chemical Society, 2010, 132(29): 10118-10126.
[57]  Kranz C. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques[J]. Analyst, 2014, 139(2): 336-352. [66] O’Connell M A, Wain A J. Combined electrochemical-topographical imaging: A critical review[J]. Analytical Methods, 2015, 7(17): 6983-6999.
[58]  Nadappuram B P, McKelvey K, Botros R A, et al. Fabrication and characterization of dual function nanoscale pH scanning ion conductance microscopy (SICM) probes for high resolution pH mapping[J]. Analytical Chemistry, 2013, 85(17): 8070-8074.
[59]  Sen M, Takahashi Y, Matsumae Y, et al. Improving the electrochemical imaging sensitivity of scanning electrochemical microscopy-scanning ion conductance microscopy by using electrochemical Pt deposition[J]. Analytical Chemistry, 2015, 87(6): 3484-3489.
[60]  Clausmeyer J, Botz A, Oehl D, et al. The oxygen reduction reaction at the three-phase boundary: Nanoelectrodes modified with Ag nanoclusters[J]. Faraday Discussions, 2016, 193: 241-250.
[61]  Yang C, Sun P. Fabrication and characterization of a dual submicrometer-sized electrode[J]. Analytical Chemistry, 2009, 81(17): 7496-7500.
[62]  Binnig G, Rohrer H. Scanning tunneling microscopy[J]. Helvetica Physica Acta, 1982, 55(6): 726-735.
[63]  Pohl D W, Denk W, Lanz M. Optical stethoscopy image recording with resolution λ/20[J]. Applied Physics Letters, 1984, 44(7): 651-653.
[64]  Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9): 930-933.
[65]  Hansma P K, Drake B, Marti O, et al. The scanning ion-conductance microscope[J]. Science, 1989, 243(4891): 641-643.
[66]  Bard A J, Fan F F, Kwak J, et al. Scanning electrochemical microscopy introduction and principal[J]. Analytical Chemistry, 1989, 61(2): 132-138.
[67]  Simpson B H, Rodriguez-Lopez J. Electrochemical imaging and redox interrogation of surface defects on operating SrTiO3 photoelectrodes[J]. Journal of the American Chemical Society, 2015, 137(47): 14865-14868.
[68]  Wolbarsht M L, Macnichol E F, Wagner H G. Glass insulated platinum microelectrode[J]. Science, 1960, 132(3436): 1309-1310.
[69]  Penner R M, Heben M J, Longin T L, et al. Fabrication and use of nanometer-sized electrodes in electrochemistry[J]. Science, 1990, 250(4984): 1118-1121.
[70]  Nagahara L A, Thundat T, Lindsay S M. Preparation and characterization of STM tips for electrochemical studies[J]. Review of Scientific Instruments, 1989, 60(10): 3128-3130.
[71]  Li X, Majdi S, Dunevall J, et al. Quantitative measurement of transmitters in individual vesicles in the cytoplasm of single cells with nanotip electrodes[J]. Angewante Chemie International Edition, 2015, 54(41): 11978-11982.
[72]  Li Y, Cox J T, Zhang B. Electrochemical responses and electrocatalysis at single Au nanoparticles[J]. Journal of The American Chemical Society, 2010, 132(9): 3047-3054.
[73]  Fernandez J, Bard A J. Scanning electrochemical microscopy 50. Kinetic study of electrode reactions by the tip generation-substrate collection mode[J]. Analytical Chemistry, 2004, 76(8): 2281-2289.
[74]  O’Connell M A, Wain A J. Mapping electroactivity at individual catalytic nanostructures using high-resolution scanning electrochemical-scanning ion conductance microscopy[J]. Analytical Chemistry, 2014, 86(24): 12100-12107.
[75]  Actis P, Tokar S, Clausmeyer J, et al. Electrochemical nanoprobes for single-cell analysis[J]. ACS Nano, 2014, 8(1): 875-884.
[76]  Kranz C, Friedbacher G, Mizaikoff B, et al. Integrating an ultramicroelectrode in an AFM cantilever: Combined technology for enhanced information[J]. Analytical Chemistry, 2001, 73(11): 2491-2500.
[77]  Burt D P, Wilson N R, Weaver J M R, et al. Nanowire probes for high resolution combined scanning electrochemical microscopy - atomic force microscopy[J]. Nano Letters, 2005, 5(4): 639-643.
[78]  Nellist M R, Chen Y K, Mark A, et al. Atomic force microscopy with nanoelectrode tips for high resolution electrochemical, nanoadhension and nanoelectrical imaging[J]. Nanotechnology, 2017, 28(9): 095711.
[79]  Lee E, Kim M, Seong J, et al. An L-shaped nanoprobe for scanning electrochemical microscopy-atomic force microscopy[J]. Physica Status Solidi-Rapid Research Letters, 2013, 7(6): 406-409.
[80]  Yu Y, Gao Y, Hu K, et al. Electrochemistry and electrocatalysis at single gold nanoparticles attached to carbon nanoelectrodes[J]. ChemElectroChem, 2015, 2(1): 58-63.
[81]  Fan Y S, Han C, Zhang B. Recent advances in the development and application of nanoelectrodes[J]. Analyst, 2016, 141(19): 5474-5487.
[82]  Wang Y X, Shan X N, Tao N J. Emerging tools for studying single entity electrochemistry[J]. Faraday Discussions, 2016, 193: 9-39.
[83]  Li Y R, Ning X M, Ma Q L, et al. Recent advances in electrochemistry by scanning electrochemical microscopy[J]. TrAC-Trends in Analytical Chemistry, 2016, 80: 242-254.
[84]  Zoski C G. Review-Advances in scanning electrochemical microscopy (SECM)[J]. Journal of The Electrochemical Society, 2016, 163(4): H3088-H3100.
[85]  Clausmeyer J, Schuhmann W. Nanoelectrodes: Applications in electrocatalysis, single-cell analysis and highresolution electrochemical imaging[J]. TrAC-Trends in Analytical Chemistry, 2016, 79: 46-59.
[86]  Cao F H(曹发和), Xia Y(夏研), Liu W J(刘文娟), et al. Basic principles and applications of SECM in metal corrosion SECM[J]. Journal of Electrochemistry(电化学), 2013, 19(5): 393-401.
[87]  Li Y, Hu K K, Yu Y, et al. Direct electrochemical measurements of reactive oxygen and nitrogen species in nontransformed and metastatic human breast cells[J]. Journal of the American Chemical Society, 2017, 139(37): 13055-13062.
[88]  Zhou J Y, Jiang D C, Chen H Y. Nanoelectrochemical architectures for high-spatial-resolution single cell analysis[J]. Science China-Chemistry, 2017, 60(10): 1277-1284.
[89]  Macpherson J V, Unwin P R. Combined scanning electrochemical-atomic force microscopy[J]. Analytical Chemistry, 2000, 72(2): 276-285.
[90]  Patil A V, Beker A F, Wiertz F G M, et al. Fabrication and characterization of polymer insulated carbon nanotube modified electrochemical nanoprobes[J]. Nanoscale, 2010, 2(5): 734-738.
[91]  Pust S E, Salomo M, Oesterschulze E, et al. Influence of electrode size and geometry on electrochemical experiments with combined SECM-SFM probes[J]. Nanotechnology, 2010, 21(1): 105709.
[92]  Eckhard K, Chen X X, Turcu F, et al. Redox-competition mode of scanning electrochemical microscopy (SECM)[J]. Physical Chemistry Chemical Physics, 2006, 8(45): 5359-5365.
[93]  Chen X X, Eckhard K, Zhou M, et al. Electrocatalytic activity of spots of electrodeposited fuel-cell catalysts on carbon nanotubes modified glassy carbon[J]. Analytical Chemistry, 2009, 81(18): 7597-7603.
[94]  Fernandez J, Bard A J. Scanning electrochemical microscopy. 47. Imaging electrocatalytic activity for oxygen reduction in an acidic medium by the tip generation-substrate collection mode[J]. Analytical Chemistry, 2003, 75(13): 2967-2974.
[95]  Ludwig M, Kranz C, Schuhmann W, et al. Topography feedback mechanism for the scanning electrochemical microscope based on hydrodynamic forces between tip and sample[J]. Review of Scientific Instruments, 1995, 66(4): 2857-2860.
[96]  Nebel M, Eckhard K, Erichsen T, et al. 4D shearforce-based constant-distance mode scanning electrochemical microscopy[J]. Analytical Chemistry, 2010, 82(18): 7842-7848.
[97]  Chen S L, Liu Y W. Electrochemistry at nanometer-sized electrodes[J]. Physical Chemistry Chemical Physics, 2014, 16(2): 635-652.
[98]  Wittstock G. Scanning electrochemical microscopy for analysis of functional material[J]. Optics & Optoelectronic Technology, 2012, 10(4): 6-11.
[99]  Li B H(李保华), Ma Y(马燕), Huang L(黄蕾). Progress of scanning electrochemical microscopy and its application in the biological analysis[J]. Chemistry(化学通报), 2013, 76(2): 124-131.
[100]  Lin C J(林昌健), Li Y(李彦), Lin B(林斌), et al. Developments of scanning electrochemical probes and their applications in studying of localized corrosions[J]. Journal of Electrochemistry(电化学), 2009, 15(2): 121-128.
[101]  Zhang Y(张贇), Wu X M(吴晓梅), Zeng X Q(曾小勤), et al. Application of scanning electrochemical microscopy in power sources[J]. Chinese Journal of Power Sources(电源技术), 2015, 39(5): 1129-1131.
[102]  Angle M R, Schaefer A T. Neuronal recordings with solid-conductor intracellular nanoelectrodes (SCINEs)[J]. Plos One, 2012, 7(8): e43194.
[103]  Zhao G, Giolando D M, Kirchhoff J R. Cheminform abstract: Fabrication of silica-coated carbon fiber ultramicroelectrodes by chemical vapor deposition[J]. Analytical Chemistry, 1995, 67(15): 2592-2598.
[104]  Li Y T, Zhang S H, Wang L, et al. Nanoelectrode for amperometric monitoring of individual vesicular exocytosis inside single synapses[J]. Angewante Chemie International Edition, 2014, 53(46): 12456-12460.
[105]  Watkins J J, Chen J, White H S, et al. Zeptomole voltammetric detection and electron-transfer rate measurements using platinum electrodes of nanometer dimensions[J]. Analytical Chemistry, 2003, 75(6): 3962-3971.
[106]  Takahashi Y, Shevchuk A I, Novak P, et al. Multifunctional nanoprobes for nanoscale chemical imaging and localized chemical delivery at surfaces and interfaces[J]. Angewante Chemie International Edition, 2011, 50(41): 9638-9642.
[107]  Kim Y T, Scarnulis D M, Ewing A G. Carbon-ring electrodes with 1-μm tip diameter[J]. Analytical Chemistry, 1986, 58(8): 1782-1786.
[108]  McNally M, Wong D K Y. An in vivo probe based on mechanically strong but structurally small carbon electrodes with an appreciable surface area[J]. Analytical Chemistry, 2001, 73(20): 4793-4800.
[109]  Rees H R, Anderson S E, Privman E, et al. Carbon nano-pipette electrodes for dopamine detection in drosophila[J]. Analytical Chemistry, 2015, 87(7): 3849-3855.
[110]  Hu K K, Gao Y, Wang Y X, et al. Platinized carbon nanoelectrodes as potentiometric and amperometric SECM probes[J]. Journal of Solid State Electrochemistry, 2013, 17(12): 2971-2977.
[111]  Wain A J, Cox D, Zhou S, et al. High-aspect ratio needle probes for combined scanning electrochemical microscopy-atomic force microscopy[J]. Electrochemistry Communications, 2011, 13(1): 78-81.
[112]  Avdic A, Lugstein A, Wu M, et al. Fabrication of coneshaped boron doped diamond and gold nanoelectrodes for AFM-SECM[J]. Nanotechnology, 2011, 22(14): 145306.
[113]  Wain A J, Pollard A J, Richter C. High-resolution electrochemical and topographical imaging using batch-fabricated cantilever probes[J]. Analytical Chemistry, 2014, 86(1): 5143-5149.
[114]  Sun T, Yu Y, Zacher, et al. Scanning electrochemical microscopy of individual catalytic nanoparticles[J]. Angewante Chemie International Edition, 2014, 53(51): 14120-14123.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133