全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

模板辅助合成氮掺杂的多孔碳基氧还原电催化剂的研究进展
Recent Progress in Template-Assisted Synthesis of Nitrogen-Doped Porous Carbons for Oxygen Electroreduction

DOI: 10.13208/j.electrochem.161242

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 氮掺杂的多孔碳材料有望能取代当前普遍应用于质子交换膜燃料电池和金属-空气电池阴极中的贵金属氧还原催化剂,因而备受关注. 模板辅助合成技术作为一种可靠、通用的方法已经在多孔碳电催化剂的制备中得到了广泛的应用. 在碳基ORR电催化剂中,其ORR活性受到诸多因素的影响,如掺杂剂的浓度及其在碳上的分子掺杂态、孔洞结构、比表面积以及碳基材料的导电性等. 本文对近期氮掺杂多孔碳电催化剂的设计、制备、功能化及其在氧还原电催化中的应用研究进展进行了总结,同时展望了模板辅助合成法的一些发展趋势

References

[1]  Chabot V, Higgins D, Yu A, et al. A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment[J]. Energy & Environmental Science, 2014, 7 (5) : 1564-1596.
[2]  Yang S, Feng X L, Wang X, et al. Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions[J]. Angewandte Chemie-International Edition, 2011, 50 (23) : 5339-5343.
[3]  Lee J, Kim J, Hyeon T Recent Progress in the Synthesis of Porous Carbon Materials[J]. Advanced Materials, 2006, 18 (16) : 2073-2094.
[4]  Yang H B, Miao J W, Hung S F, et al. Identification of Catalytic Sites for Oxygen Reduction and Oxygen Evolution in N-Doped Graphene Materials: Development of Highly Efficient Metal-Free Bifunctional Electrocatalyst[J]. Science Advances, 2016, 2, e1501122.
[5]  Roberts A D, Li X, Zhang H Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chemical Society Reviews, 2014, 43 (13) : 4341-4356.
[6]  Liu Y L, Shi C X, Xu X Y, et al. Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction[J]. Journal of Power Sources, 2015, 283, 389-396.
[7]  Liu W J, Tian K, He Y R, et al. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environmental Science & Technology, 2014, 48 (23) : 13951-9.
[8]  Wang S G, Cui Z T, Qin J W, et al. Thermally removable in-situ formed ZnO template for synthesis of hierarchically porous N-doped carbon nanofibers for enhanced electrocatalysis[J]. Nano Research, 2016, 9 (8) : 2270-2283.
[9]  Niu W H, Li L G, Liu J, et al. Graphene-Supported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction[J]. Small, 2016, 12 (14) : 1900-1908.
[10]  Wang H B, Maiyalagan T, Wang X Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications[J]. ACS Catalysis, 2012, 2 (5) : 781-794.
[11]  Niu W H, Li L G, Liu X J, et al. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: an efficient electrocatalyst for oxygen reduction reaction[J]. Journal of the American Chemical Society, 2015, 137 (16) : 5555-5562.
[12]  Zhang L J, Wang X Y, Wang R H, et al. Structural Evolution from Metal-Organic Framework to Hybrids of Nitrogen-Doped Porous Carbon and Carbon Nanotubes for Enhanced Oxygen Reduction Activity[J]. Chemistry of Materials, 2015, 27 (22) : 7610-7618.
[13]  Zhou M, Wang H L, Guo S Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials[J]. Chemical Society Reviews, 2016, 45 (5) : 1273-1307.
[14]  Yu H, Shang L, Bian T, et al. Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction[J]. Advanced Materials, 2016, 28 (25) : 5080-5086.
[15]  Liang H W, Wei W, Wu Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemistry Society, 2013, 135 (43) : 16002-16005.
[16]  Liang C, Li Z, Dai S Mesoporous carbon materials: synthesis and modification[J]. Angewandte Chemie International Edition, 2008, 47 (20) : 3696-3717.
[17]  Liu X J, Zou S Z, Chen S W Ordered mesoporous carbons codoped with nitrogen and iron as effective catalysts for oxygen reduction reaction[J]. Nanoscale, 2016, 8(46): 19249-19255.
[18]  Hu P, Liu K, Deming C P, et al. Multifunctional graphene‐based nanostructures for efficient electrocatalytic reduction of oxygen[J]. Journal of Chemical Technology and Biotechnology, 2015, 90 (12) : 2132-2151.
[19]  Su Y Z, Yao Z Q, Zhang F, et al. Sulfur-Enriched Conjugated Polymer Nanosheet Derived Sulfur and Nitrogen co-Doped Porous Carbon Nanosheets as Electrocatalysts for Oxygen Reduction Reaction and Zinc-Air Battery[J]. Advanced Functional Materials, 2016, 26 (32) : 5893-5902.
[20]  Liang C, Hong K, Guiochon G A, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angewandte Chemie-International Edition, 2004, 43 (43) : 5785-5789.
[21]  Lee H I, Kim J H, You D J, et al. Rational Synthesis Pathway for Ordered Mesoporous Carbon with Controllable 30- to 100-Angstrom Pores[J]. Advanced Materials, 2008, 20 (4) : 757-762.
[22]  Xu Z, Zhuang X, Yang C, et al. Nitrogen-Doped Porous Carbon Superstructures Derived from Hierarchical Assembly of Polyimide Nanosheets[J]. Advanced Materials, 2016, 28 (10) : 1981-7.
[23]  Shi H, Shen Y F, He F, et al. Recent advances of doped carbon as non-precious catalysts for oxygen reduction reaction[J]. Journal of Materials Chemistry A, 2014, 2 (38) : 15704-15716.
[24]  Zhou X J, J l Qiao, Yang L, et al. A Review of Graphene-Based Nanostructural Materials for Both Catalyst Supports and Metal-Free Catalysts in PEM Fuel Cell Oxygen Reduction Reactions[J]. Advanced Energy Materials, 2014, 4 (8) : 1301523.
[25]  Lin L, Zhu Q, Xu A W Noble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions[J]. Journal of the American Chemical Society, 2014, 136 (31): 11027-11033.
[26]  Santoro C, Serov A, Villarrubia C W N, et al. Double-chamber microbial fuel cell with a non-platinum-group metal Fe-N-C cathode catalyst[J]. ChemSusChem, 2015, 8 (5) : 828-834.
[27]  Liu R, Wu D, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction[J]. Angewandte Chemie-International Edition, 2010, 49 (14) : 2565-2569.
[28]  Liu M, Zhang R, Chen W Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications[J]. Chemical Reviews, 2014, 114 (10) : 5117-5160.
[29]  Higgins D, Zamani P, Yu A P, et al. The application of graphene and its composites in oxygen reduction electrocatalysis: a perspective and review of recent progress[J]. Energy & Environmental Science, 2016, 9 (2) : 357-390.
[30]  Z L, M S, L Z, et al. Directed Growth of Metal-Organic Frameworks and Their Derived Carbon-Based Network for Efficient Electrocatalytic Oxygen Reduction[J]. Advanced Materials, 2016, 28 (12) : 2337-2344.
[31]  Mane G P, Talapaneni S N, Anand C, et al. Preparation of Highly Ordered Nitrogen-Containing Mesoporous Carbon from a Gelatin Biomolecule and its Excellent Sensing of Acetic Acid[J]. Advanced Functional Materials, 2012, 22 (17) : 3596-3604.
[32]  Yin H, Zhang C Z, Liu F, et al. Hybrid of Iron Nitride and Nitrogen-Doped Graphene Aerogel as Synergistic Catalyst for Oxygen Reduction Reaction[J]. Advanced Functional Materials, 2014, 24 (20) : 2930-2937.
[33]  Zhong H X, Wang J, Zhang Y W, et al. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts[J]. Angewandte Chemie-International Edition, 2014, 53 (51) : 14235-14239.
[34]  Wood K N, Ryan O H, Pylypenko S Recent progress on nitrogen carbon structures designed for use in energy and sustainability applications[J]. Energy & Environmental Science, 2014, 7 (4) : 1212-1249.
[35]  Xu Z X, Zhuang X D, Yang C Q, et al. Nitrogen-Doped Porous Carbon Superstructures Derived from Hierarchical Assembly of Polyimide Nanosheets[J]. Advanced Materials, 2016, 28 (10) : 1981-1987.
[36]  Wei W, Liang H W, Parvez K, et al. Nitrogen-Doped Carbon Nanosheets with Size-Defined Mesopores as Highly Efficient Metal-Free Catalyst for the Oxygen Reduction Reaction[J]. Angewandte Chemie-International Edition, 2014, 53 (6) : 1570-1574.
[37]  Stein A, Wang Z Y, Fierke M A Functionalization of Porous Carbon Materials with Designed Pore Architecture[J]. Advanced Materials, 2009, 21 (3) : 265-293.
[38]  Han J P, Xu G Y, Ding B, et al. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2 (15) : 5352-5357.
[39]  Deng Y H, Wei J, Sun Z K, et al. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers[J]. Chemical Society Reviews, 2013, 42 (9) : 4054-4070.
[40]  Dutta S, Bhaumik A, Wu K C W Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy & Environmental Science, 2014, 7 (11) : 3574-3592.
[41]  Zhu Q L, Xia W, Akita T, et al. Metal-Organic Framework-Derived Honeycomb-Like Open Porous Nanostructures as Precious-Metal-Free Catalysts for Highly Efficient Oxygen Electroreduction[J]. Advanced Materials, 2016, 28 (30) : 6391-6398.
[42]  Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Advanced Materials, 2013, 25 (43) : 6226-6231.
[43]  Ding S Y, Wang W Covalent organic frameworks (COFs): from design to applications[J]. Chemical Society Reviews, 2013, 42 (2) : 548-568.
[44]  Silva R, Voiry D, Chhowalla M, et al. Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons[J]. Journal of the American Chemical Society, 2013, 135 (21) : 7823-7826.
[45]  Liang H W, X D Zhuang, Bruller S, et al. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction[J]. Nature Communications, 2014, 5, 4973.
[46]  Chen S, Bi J, Zhao Y, et al. Nitrogen-Doped Carbon Nanocages as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reaction[J]. Advanced Materials, 2012, 24(41): 5593-5597.
[47]  Sun T, Wu Q, Zhuo O, et al. Manganese oxide-induced strategy to high-performance iron/nitrogen/carbon electrocatalysts with highly exposed active sites[J]. Nanoscale, 2016, 8(16): 8480-8485.
[48]  Sun Y Q, Sun C, Shi G Q Nanoporous nitrogen doped carbon modified graphene as electrocatalyst for oxygen reduction reaction[J]. Journal of Materials Chemistry, 2012, 22 (25) : 12810.
[49]  Tang J, Liu J, Li C, et al. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores through assembly of diblock copolymer micelles[J]. Angewandte Chemie-International Edition, 2015, 54 (2) : 588-593.
[50]  Xiao M, Zhu J, Feng L, et al. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions[J]. Advanced Materials, 2015, 27 (15) : 2521-2527.
[51]  Naveen M H, Shim K, Hossain M S A, et al. Template Free Preparation of Heteroatoms Doped Carbon Spheres with Trace Fe for Efficient Oxygen Reduction Reaction and Supercapacitor[J]. Advanced Energy Materials, 2017, DOI:10.1002/aenm.201602002.
[52]  Niu W H, Li L G, Wang N, et al. Volatilizable template-assisted scalable preparation of honeycomb-like porous carbons for efficient oxygen electroreduction[J]. Journal of Materials Chemistry A, 2016, 4 (28) : 10820-10827.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133