|
- 2018
基于钛酸锂负极和聚三苯胺正极的电池电容体系
|
Abstract:
摘要 由于高安全、高功率和超长循环寿命等优点,钛酸锂负极材料近年来得到了广泛关注,基于钛酸锂负极的高性能超级电池电容器和锂离子电池也成为近年来的研究热点. 本文采用化学氧化法制备了有机物正极材料聚三苯胺,并通过经典的电化学测试方法研究了其储能机理及相应的电极动力学过程. 研究结果表明,该有机物正极的储能机制主要是基于阴离子的吸脱附反应,并表现出85 mA·g-1的可逆容量,且其动力学过程不受扩散控制,属于典型的赝电容行为. 将该正极与钛酸锂负极结合构成了新型的电池电容体系,并对其电化学性能进行了研究,结果表明该体系具有高功率特性,且能量密度高于传统的混合型超级电容器. 此外,本文还对该有机物正极的不足和实际应用中所面临的挑战做了初步分析
[1] | Jung H G, Myung S T, Yoon C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries[J]. Energy Environmental Science,2011, 4(4): 1345-1351. |
[2] | Zhu G N, Liu H J, Zhuang J H, et al. Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries[J]. Energy Environmental Science, 2011, 4(10): 4016-4022. |
[3] | Huang S H, Wen Z Y, Lin B, et al. The high-rate performance of the newly designed Li4Ti5O12/Cu composite anode for lithium ion batteries[J]. Journal of Alloys Compound, 2008, 457(1/2): 400-403. |
[4] | Li N, Zhou G M, Li F, et al. A self-standing and flexible electrode of Li4Ti5O12 nanosheets with a N-doped carbon coating for high rate lithium ion batteries[J]. Advanced Functional Material, 2013, 23(43): 5429-5435. |
[5] | Cheng L, Yan J, Zhu G N, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation [J]. Journal of Material Chemistry, 2010, 20(3): 595-602. |
[6] | Huang S H, Wen Z Y, Zhu X J, et al. Preparation and electrochemical performance of spinel-type compounds Li4AlyTi5-yO12 (y = 0, 0.10, 0.15, 0.25)[J]. Journal of Electrochemical Society, 2005, 152(1): A186-A190. |
[7] | Cheng L, Liu H J, Zhang J J, et al. Nanosized Li4Ti5O12 prepared by molten salt method as an electrode material for hybrid electrochemical supercapacitors[J]. Journal of Electrochemical Society, 2006, 153(8): A1472-A1477. |
[8] | Zhu G N, Wang C X, Xia Y Y. A comprehensive study of effects of carbon coating on Li4Ti5O12 anode material for lithium-ion batteries[J]. Journal of Electrochemical Society, 2011, 158(2): A102-A109. |
[9] | Wang Y, Liu H, Wang K, et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon[J]. Journal of Material Chemistry, 2009, 19(37): 6789-6795. |
[10] | Huang S H, Wen Z Y, Zhu X J, et al. Preparation and electrochemical performance of Ag doped Li4Ti5O12[J]. Electrochemical Communication, 2004, 6(11): 1093-1097. |
[11] | Ohzuku T, Tatsumi K, Matoba N, et al. Electrochemistry and structural chemistry of LiCrTiO4 (Fd3m) in nonaqueous lithium cells[J]. Journal of Electrochemical Society,2000, 147(10): 3592-3597. |
[12] | Wang Y F(王怡菲), Tang Y F(唐宇峰), Qiu Z(仇征), et al. Preparation and electrochemical behavior of Li4Ti5O12 nanosheets as anode material for lithium ion battery[J].Journal of Electrochemistry(电化学), 2010, 16(1): 46-50. |
[13] | Amatucci G G, Badway F, Du Pasquier A, et al. An asymmetric hybrid nonaqueous energy storage cell [J]. Journal of Electrochemical Society, 2001, 148(8): A930-A939. |
[14] | Belharouak I, Sun Y K, Lu W, et al. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system[J]. Journal of Electrochemical Society, 2007, 154(12): A1083-A1087. |
[15] | Wu H M, Belharouak I, Deng H, et al. Development of LiNi0.5Mn1.5O4/Li4Ti5O12 system with long cycle life[J]. Journal of Electrochemical Society, 2009, 156 (12): A1047-A1050. |
[16] | Borner M, Klamor S, Hoffmann B, et al. Investigations on the C-rate and temperature dependence of manganesedissolution/deposition in LiMn2O4/Li4Ti5O12 lithium ion batteries[J]. Journal of Electrochemical Society, 2016, 163(6): A831-A837. |
[17] | Aravindan V, Lee Y S, Madhavi S. Research progress on negative electrodes for practical Li-ion batteries, beyond carbonaceous anodes[J]. Advanced Energy Letter, 2015,5(13): 1402225. |
[18] | Zou Q Q, Zhu G N, Xia Y Y. Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode[J]. Journal of Power Sources, 2012, 206: 222-229. |
[19] | Kim J H, Bae S Y, Min J H, et al. Study on the cycling performance ofLi4Ti5O12/LiCoO2 cells assembled with ionic liquid electrolytes containing an additive[J]. Electrochimica Acta, 2012, 78: 11-16. |
[20] | Takahashi C, Moriya S, Fugono N, et al. Preparation and characterization of poly(4-alkyltriphenylamine) by chemical oxidative polymerization[J]. Synthesis Metal, 2002,129(2): 123-128. |
[21] | She Q J(佘秋洁), Wei Z K(魏志凯), Zheng M S(郑明森), et al. Electrochemical performance of polytriphenylamine as a novel non-aqueous supercapcitor cathode material[J]. Journal of Electrochemistry (电化学), 2011,17(1): 53-56. |
[22] | Shen L F, Yuan C Z, Luo H J, et al. In situ synthesis of high-loading Li4Ti5O12-graphene hybrid nanostructures for high rate lithium ion batteries[J]. Nanoscale, 2011, 3(2):572-574. |
[23] | Kang E, Jung Y S, Kim G H, et al. Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method[J]. Advanced Functionalmaterial, 2011, 21(22): 4349-4357. |
[24] | Liu J L(刘金龙), Lu Z G(卢周广), Ren Y(任扬), et al.Preparation and modification of Li4Ti5O12 as anode materials for lithium-ion batteries[J]. Journal of Electrochemistry (电化学), 2012, 18(4): 342-347. |
[25] | Feng J K, Cao Y L, Ai X P, et al. Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries[J]. Journal of Power Sources,2008, 177(1): 199-204. |
[26] | Kvarnstrom C, Petr A, Damlin P, et al. Raman and FTIR spectroscopic characterization of electrochemically synthesized poly(triphenylamine), PTPA[J]. Journal of Solid State Electrochemistry, 2002, 6(8): 505-512. |