全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

Co3(HCOO)6@rGO 作为锂离子电池负极材料的研究
Co3(HCOO)6@rGO as a Promising Anode for Lithium Ion Batteries

DOI: 10.13208/j.electrochem.170412

Keywords: Co3(HCOO)6@rGO,Co3(HCOO)6,甲酸根,负极,锂离子电池,
Co3(HCOO)6@rGO
,?Co3(HCOO)6,formate ion,anode,lithium ion batteries

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要 MOFs材料作为一类新型的锂离子电池电极材料而受到广泛关注和研究. 作者通过溶液扩散法将Co3(HCOO)6原位负载在 rGO(还原氧化石墨烯)上制备出Co3(HCOO)6@rGO复合材料. 将Co3(HCOO)6@rGO作为锂离子电池负极材料,以500 mA·g-1的电流密度恒电流充放电循环 100 周后,仍然保持有 926 mAh·g-1 的比容量,亦表现出很好的倍率性能. 循环伏安和X-射线光电子能谱测试表明,Co3(HCOO)6@rGO材料上的Co2+和甲酸根在充放电过程中均发生可逆的电化学反应. 对比同样采用溶液扩散法合成的 Co3(HCOO)6 的测试结果发现,rGO起到活化甲酸根的电化学反应的作用,同时也改善了Co3(HCOO)6的倍率性能. 将MOFs材料与rGO复合为优化 MOFs 材料的电池性能提供了一个新思路

References

[1]  Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009, 8(2): 120-125.
[2]  Li X, Cheng F, Zhang S, et al. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2[J]. Journal of Power Sources, 2006, 160(1): 542-547.
[3]  Su F Y, You C, He Y B, et al. Flexible and planar graphene conductive additives for lithium-ion batteries[J]. Journal of Materials Chemistry, 2010, 20(43): 9644-9650.
[4]  Guo J C, Liu Q, Wang C S, et al. Interdispersed amorphous mnox-carbon nanocomposites with superior electrochemical performance as lithium-storage material[J]. Advanced Functional Materials, 2012, 22(4): 803-811.
[5]  Huang X L, Wang R Z, Xu D, et al. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries[J]. Advanced Functional Materials, 2013, 23(35): 4345-4353.
[6]  Liu Y, Wang Z U, Zhou H C. Recent advances in carbon dioxide capture with metal-organic frameworks[J]. Greenhouse Gases: Science and Technology, 2012, 2(4): 239-259.
[7]  Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angewandte Chemie International Edition, 2007, 46(40): 7548-7558.
[8]  Coulter K E, Sault A G. Effects of activation on the surface properties of silica-supported cobalt catalysts[J]. Journal of Catalysis, 1995, 154(1): 56-64.
[9]  Leroy S, Martinez H, Dedryvère R, et al. Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study[J]. Applied Surface Science, 2007, 253(11): 4895-4905.
[10]  Wang Z, Chen G, Ding K. Self-supported catalysts[J]. Chemical Reviews, 2009, 109(2): 322-359.
[11]  Liu K, You H P, Zheng Y H, et al. Facile and rapid fabrication of metal-organic framework nanobelts and colortunable photoluminescence properties[J]. Journal of Materials Chemistry, 2010, 20(16): 3272-3279.
[12]  Armand M, Tarascon J M. Building better batteries[J]. Naure, 2008, 451(7179): 652-657.
[13]  Wang Z, Zhang B, Kurmoo M, et al. Synthesis and characterization of a porous magnetic diamond framework, Co3(HCOO)6, and its N2 sorption characteristic[J]. Inorganic Chemistry, 2005, 44(5): 1230-1237.
[14]  Wang L P, Mou C X, Sun Y, et al. Structure-property of metal organic frameworks calcium terephthalates anodes for lithium-ion batteries[J]. Electrochimica Acta, 2015, 173: 235-241.
[15]  Yang Z, Xu X, Liang X, et al. MIL-53(Fe)-graphene nanocomposites: Efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Applied Catalysis B: Environmental, 2016, 198: 112-123.
[16]  Ke F S, Wu Y S, Deng H. Metal-organic frameworks for lithium ion batteries and supercapacitors[J]. Journal of Solid State Chemistry, 2015, 223(S1): 109-121.
[17]  Gou L, Hao L M, Shi Y X, et al. One-pot synthesis of a metal-organic framework as an anode for Li-ion batteries with improved capacity and cycling stability[J]. Journal of Solid State Chemistry, 2014, 210(1): 121-124.
[18]  Khassin A A, Yurieva T M, Kaichev V V, et al. Metal-support interactions in cobalt-aluminum co-precipitated catalysts: XPS and CO adsorption studies[J]. Journal of Molecular Catalysis A: Chemical, 2001, 175(1/2): 189-204.
[19]  Kocijan A, Milo?ev I, Pihlar B. Cobalt-based alloys for orthopaedic applications studied by electrochemical and XPS analysis[J]. Journal of Materials Science: Materials in Medicine, 2004, 15(6): 643-650.
[20]  Fu L, Liu Z M, Liu Y Q, et al. Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices[J]. Advanced Materials, 2005, 17(2): 217-221.
[21]  Sivaprakash S, Majumder S B. Spectroscopic analyses of 0.5Li[Ni0.8Co0.15Zr0.05]O2-0.5Li[Li1/3Mn2/3]O2 composite cathodes for lithium rechargeable batteries[J]. Solid State Ionics, 2010, 181(15/16): 730-739.
[22]  Chu D B(褚道葆), Li J(李建), Yuan X M(袁希梅), et al. Tin-based alloy anode materials for lithium ion batteries[J]. Progress in Chemistry(化学进展), 2012, 27(8): 1466-1476.
[23]  Wang S, Wang L, Zhang K, et al. Organic Li4C8H2O6 nano-sheets for lithium-ion batteries[J]. Nano Letters, 2013, 13(9): 4404-4409.
[24]  Long J R, Yaghi O M. The pervasive chemistry of metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1213-1214.
[25]  Motokawa N, Matsunaga S, Takaishi S, et al. Reversible magnetism between an antiferromagnet and a ferromagnet related to solvation/desolvation in a robust layered [Ru2]2TCNQ charge-transfer system[J]. Journal of the American Chemical Society, 2010, 132(34): 11943-11951.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133