|
- 2018
锂离子电池负极材料Li3V2(BO3)3/C 复合材料的合成及电化学性能研究
|
Abstract:
摘要 本文以草酸锂、五氧化二钒、硼酸为原料,二水合草酸为碳原和还原剂,无水乙醇为分散剂,采用球磨法合成了Li3V2(BO3)3/C(LVB/C)复合材料前驱体,后经高温热处理得到LVB/C复合材料. 采用TG-DTA技术对前驱体进行了热分析,通过XRD、SEM、EDS等技术研究了烧结条件对 LVB/C 材料的晶体结构、微观形貌、含碳量的影响. 通过恒流充放电测试、循环性能测试、循环伏安测试和电化学阻抗测试等技术研究了烧结条件对 LVB/C 材料电化学性能的影响. 电化学测试结果表明,800 ℃下烧结10 h得到的样品电化学性能最佳,在50 mA?g-1电流密度下,首次充放电比容量分别为427.6 mAh?g-1和669.1 mAh?g-1,循环10次后,容量保持率分别为55.4 %和35.2 %
[1] | Yang Y,Wang Z X,Zhou R, et al.Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries[J]. Materials Letters, 2016, 184: 65-68. |
[2] | Sun H B,Zhou Y X,Zhang L L, et al.Investigations on Zr incorporation into Li3V2(PO4)3/C cathode materials for lithium ion batteries[J]. Physical chemistry chemical physics : PCCP, 2017, 19 (7): 5155-5162. |
[3] | Tang Z Y(唐致远),Yuan W(袁威),Yan J(闫继), et al.Preparation and electrochemical performance of Mo-doped Li3V2(PO4)3/C cathode materials[J]. Journal of Electrochemistry (电化学), 2012, 18(02): 113-117. |
[4] | Xu X Y,Wang T,Bi Y J, et al.Improvement of electrochemical activity of LiMnPO4-based cathode by surface iron enrichment[J]. Journal of Power Sources, 2017, 341: 175-182. |
[5] | Chen Z X,Cao L F,Chen L, et al.Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes[J]. Journal of Power Sources, 2015, 298: 355-362. |
[6] | Okada S,Tonuma T,Uebo Y, et al.Anode properties of calcite-type MBO3 (M:V, Fe)[J]. Journal of Power Sources, 2003, 119-121: 621-625. |
[7] | Barpanda P,Dwibedi D,Ghosh S, et al.Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: a sneak peak[J]. Ionics, 2015, 21 (7): 1801-1812. |
[8] | Legagneur V,An Y,Mosbah A, et al.LiMBO3 (M = Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties[J]. Solid State Ionics, 2001, 139 (1-2): 37-46. |
[9] | Yamada A,Iwane N,Harada Y, et al.Lithium iron borates as high-capacity battery electrodes[J]. Advanced Materals, 2010, 22 (32): 3583-3587. |
[10] | Kim D Y,Song M S,Eom J R, et al.Synthesis of VBO3-carbon composite by ball-milling and microwave heating and its electrochemical properties as negative electrode material of lithium ion batteries[J]. Journal of Alloys and Compounds, 2012, 542: 132-135. |
[11] | Wang J X,Zhang Q B,Li X H, et al. Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries[J]. Nano Energy, 2014, 6: 19-26. |
[12] | Sun J L(孙姣丽),Chen Z J(陈志娇),Li Y X(李益孝), et al.Synthesis and electrochemical property of Li2FeSiO4/C cathode materials by solid state method [J]. Journal of Electrochemistry (电化学), 2013, 19(06): 575-578. |
[13] | Scrosati B,Garche J.Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195 (9): 2419-2430. |
[14] | Goriparti S,Miele E,De Angelis F, et al.Review on recent progress of nanostructured anode materials for Li-ion batteries[J]. Journal of Power Sources, 2014, 257: 421-443. |
[15] | Huang B,Li X H,Pei Y, et al.Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability[J]. Small, 2016, 12 (14): 1945-1955. |
[16] | Wang J X,Zhang Q B,Li X H, et al.Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries[J]. Nano Energy, 2014, 6: 19-26. |
[17] | Tian X H,Zhou Y K,Tu X F, et al.Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries[J]. Journal of Power Sources, 2017, 340: 40-50. |