全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Physiological Response to Salt (NaCl) Stress in Selected Cultivated Tetraploid Cottons

DOI: 10.1155/2010/643475

Full-Text   Cite this paper   Add to My Lib

Abstract:

In the southwestern and western Cotton Belt of the U.S. soil salinity can reduce cotton productivity and quality. This study was conducted to determine the physiological responses of six genotypes including five Upland cotton (Gossypium hirsutum L.) cultivars and one Pima cotton line (G. barbadense L.) to NaCl under greenhouse conditions. Seeds were germinated and grown for 14 days prior to salt treatment (daily 100?ml of 200?mM NaCl) for 21 days. Compared with the control (daily 100?ml tap water), the NaCl treatment significantly reduced plant height, leaf area, fresh weight, and dry weight. The NaCl stress also significantly increased leaf chlorophyll content, but did not affect leaf fluorescence. Of the six genotypes, Pima 57-4 and SG 747 had the most growth reduction, and were most sensitive to NaCl; DP 33B, JinR 422 and Acala Phy 72 had the least growth reduction and were most NaCl tolerant. Although all the six genotypes under the salt treatment had significantly higher Na and Cl accumulation in leaves, SG 747 and Pima 57-4 accumulated more Na and Cl than DP 33B. Increases in leaf N, Zn, and Mn concentrations were also observed in the NaCl-treated plants. While leaf P, Ca, and S concentrations remained unchanged overall in the genotypes tested, leaf K, Mg, Fe, and Cu concentrations significantly decreased during salt stress. Reduction in plant height is a simple, easy, sensitive, non-destructive measurement to evaluate salt tolerance in cotton. 1. Introduction In the southwestern and western Cotton Belt of the U.S., soil salinity can ultimately lead to reduced crop productivity. In many areas secondary salinization, as a result of irrigation practices, drainage, or water quality, are primary factors contributing to the loss of productive agricultural land [1]. Three viable options are plausible to solve the problem of saline growing environments: (1) cease the agronomic usage of salinized soils, (2) desalinize soil, or (3) use salt-tolerant cultivars. Options (1) and (2) may not be agronomically or financially viable. Salt tolerance is measured by the relative decrease in yield of cultivars grown under saline conditions relative to nonsaline conditions [2]. Even though many studies have demonstrated salt tolerance in crops including cotton, high yielding and high fiber-quality cultivars with known salt tolerance are not commercially available [3]. Identification of salt-tolerant genotypes from the cotton germplasm pool is needed. High salinity reduces plant growth by affecting the plant’s osmotic or ionic homeostasis [4]. Many studies have

References

[1]  T. E. J. Flowers, P. F. Troke, and A. Yeo, “The mechanism of salt tolerance in halophytes,” Annual Review of Plant Physiology, vol. 28, pp. 89–121, 1977.
[2]  M. Tester and R. Davenport, “ tolerance and transport in higher plants,” Annals of Botany, vol. 91, no. 5, pp. 503–527, 2003.
[3]  T. J. Flowers and A. R. Yeo, “Breeding for salinity resistance in crop plants: where next?” Australian Journal of Plant Physiology, vol. 22, no. 6, pp. 875–884, 1995.
[4]  H. Greenway and R. Munns, “Mechanisms of salt tolerance in nonhalophytes,” Annual Review of Plant Physiology, vol. 31, pp. 149–190, 1980.
[5]  F. Slama, “Effet du NaCl sur la croissance et la nutrition minerale de six espèces de plantes cultivées,” Agrochimica, vol. 30, pp. 137–147, 1986.
[6]  M. Silberbush and J. Ben-Asher, “The effect of salinity on parameters of potassium and nitrate uptake of cotton,” Communications in Soil Science and Plant Analysis, vol. 18, pp. 65–81, 1987.
[7]  H. Gouia, M. H. Ghorbal, and B. Touraine, “Effects of NaCl on flows of N and mineral ions and on - reduction rate within whole plants of salt-sensitive bean and salt-tolerant cotton,” Plant Physiology, vol. 105, no. 4, pp. 1409–1418, 1994.
[8]  A. Z. Jafri and R. Ahmad, “Plant growth and ionic distribution in cotton (Gossypium hirsutum L.) under saline environment,” Pakistan Journal of Botany, vol. 26, pp. 105–114, 1994.
[9]  M. Qadir and M. Shams, “Some agronomic and physiological aspects of salt tolerance in cotton (Gossypium hirsutum L.),” Journal of Agronomy and Crop Science, vol. 179, no. 2, pp. 101–106, 1997.
[10]  S. N. Rajguru, S. W. Banks, D. R. Gossett, M. C. Lucas, T. E. J. Fowler Jr., and E. P. Millhollon, “Antioxidant response to salt stress during fiber development in cotton ovules,” Journal of Cotton Science, vol. 3, no. 1, pp. 11–18, 1999.
[11]  M. Ashraf and S. Ahmad, “Influence of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerant and salt-sensitive lines of cotton (Gossypium hirsutum L.),” Field Crops Research, vol. 66, no. 2, pp. 115–127, 2000.
[12]  H.-W. Koyro, “Effect of high NaCl-salinity on plant growth, leaf morphology, and ion composition in leaf tissues of Beta vulgaris ssp. maritima,” Journal of Applied Botany, vol. 74, no. 1-2, pp. 67–73, 2000.
[13]  I. Tozlu, G. A. Moore, and C. L. Guy, “Effects of increasing NaCl concentration on stem elongation, dry mass production, and macro- and micro-nutrient accumulation in Poncirus trifoliata,” Australian Journal of Plant Physiology, vol. 27, no. 1, pp. 35–42, 2000.
[14]  S. Ahmad, N. Khan, M. Z. Iqbal, A. Hussain, and M. Hassan, “Salt tolerance of cotton (Gossypium hirsutum L.),” Asian Journal of Plant Sciences, vol. 1, pp. 715–719, 2002.
[15]  G. J. Hoffman and C. J. Phene, “Effect of constant salinity levels on water-use efficiency of bean and cotton,” Transactions of the ASAE, vol. 14, pp. 1103–1106, 1971.
[16]  H. W. Gausman, P. S. Baur Jr., M. P. Porterfield, and R. Cardenas, “Effects of salt treatments of cotton plants (Gossypium hirsutum L.) on leaf mesophyll cell microstructure,” Agronomy Journal, vol. 64, pp. 133–136, 1972.
[17]  E. Brugnoli and M. Lauteri, “Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) non-halophytes,” Plant Physiology, vol. 95, no. 2, pp. 628–635, 1991.
[18]  Z. Plaut and E. Federman, “Acclimation of assimilation in cotton leaves to water stress and salinity,” Plant Physiology, vol. 97, no. 2, pp. 515–522, 1991.
[19]  E. O. Leidi, R. Nogales, and S. H. Lips, “Effect of salinity on cotton plants grown under nitrate or ammonium nutrition at different calcium levels,” Field Crops Research, vol. 26, no. 1, pp. 35–44, 1991.
[20]  E. Brugnoli and O. Bj?rkman, “Growth of cotton under continuous salinity stress: influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy,” Planta, vol. 187, no. 3, pp. 335–347, 1992.
[21]  Y. Guo, J. A. Landivar, J. C. Henggeler, and J. Moore, “Responses of cotton leaf water potential and transpiration to vapor pressure deficit and salinity under arid and humid climate conditions,” in Proceedings of the Beltwide Cotton Conference, pp. 1301–1308, National Cotton Council, San Diego, Calif, USA, January 1994.
[22]  M. H. Lashin and N. Atanasiu, “Studies on the effect of salt concentrations on the formation of dry matter, uptake of mineral nutrients and mineral composition of cotton plants during the vegetative growth period,” Journal of Agronomy and Crop Science, vol. 135, pp. 178–186, 1972.
[23]  E. O. Leidi and J. F. Saiz, “Is salinity tolerance related to Na accumulation in upland cotton (Gossypium hirsutum) seedlings?” Plant and Soil, vol. 190, no. 1, pp. 67–75, 1997.
[24]  M. Ashraf and S. Ahmad, “Exploitation on intra-specific genetic variation for improvement of salt (NaCl) tolerance in upland cotton (Gossypium hirsutum L.),” Hereditas, vol. 131, no. 3, pp. 253–256, 1999.
[25]  D. E. Longenecker, “The influence of soil salinity upon fruiting and shedding, boll characteristics, fiber quality, and yields of two cotton species,” Soil Science, vol. 115, pp. 294–302, 1973.
[26]  S. Razzouk and W. J. Whittington, “Effects of salinity on cotton yield and quality,” Field Crops Research, vol. 26, no. 3-4, pp. 305–314, 1991.
[27]  D. S. Monk and B. Roberts, “Growth and development of pima and acala cotton on saline soils,” in Proceedings of the Beltwide Cotton Conference, pp. 90–92, National Cotton Council, San Antonio, Tex, USA, January 1995.
[28]  A. Z. Jafri and R. Ahmad, “Reproductive physiology of cotton under saline conditions,” in Prospects for Saline Agriculture, pp. 209–214, Kluwer Academic, Dodrecht, The Netherlands, 2002.
[29]  V. Chinnusamy and J.-K. Zhu, “Plant salt tolerance,” in Topics in Current Genetics, H. Hirt and K. Shinozaki, Eds., pp. 241–270, Springer, Heidelberg, Germany, 2003.
[30]  R. H. Qureshi, N. Ahmad, A. Ghani, and R. Jabeen, “Screening of cotton cultivars against salinity. II. Seedling stage,” Pakistan Journal of Botany, vol. 22, pp. 27–32, 1985.
[31]  M. H. Loupassaki, K. S. Chartzoulakis, N. B. Digalaki, and I. I. Androulakis, “Effects of salt stress on concentration of nitrogen, phosphorus, potassium, calcium, magnesium, and sodium in leaves, shoots, and roots of six olive cultivars,” Journal of Plant Nutrition, vol. 25, no. 11, pp. 2457–2482, 2002.
[32]  A. N. Khan, R. H. Qureshi, and N. Ahmad, “Effects of external sodium chloride salinity on ionic composition of leaves of cotton cultivars I. Cell sap, sodium and potassium,” International Journal of Agriculture and Biology, vol. 6, pp. 781–783, 2004.
[33]  J. R. Thomas, “Osmotic and specific salt effects on growth of cotton,” Agronomy Journal, vol. 72, pp. 407–412, 1980.
[34]  D. A. Meloni, M. A. Oliva, H. A. Ruiz, and C. A. Martinez, “Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress,” Journal of Plant Nutrition, vol. 24, no. 3, pp. 599–612, 2001.
[35]  K. B. Hebbar, M. V. Venugopalan, and M. R. K. Rao, “Effect of salinity on cotton growth and development: sodium cannot substitute for potassium in cotton,” Journal of Plant Biology, vol. 27, pp. 271–276, 2000.
[36]  D. R. Gossett, E. P. Millhollon, and M. C. Lucas, “Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton,” Crop Science, vol. 34, no. 3, pp. 706–714, 1994.
[37]  G. Rathert, “Influence of extreme K:Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerance. VI. Mineral distribution variability among different salt tolerant cotton varieties,” Journal of Plant Nutrition, vol. 5, pp. 183–193, 1982.
[38]  W. Stelter, A. Lauchli, and M. G. Pitman, “K/Na-selectivity of cotton plants in relation to salt tolerance,” Plant Physiology, vol. 63, 116 pages, 1979.
[39]  C. J. Gerard and E. Hinojosa, “Cell wall properties of cotton roots as influenced by calcium and salinity,” Agronomy Journal, vol. 65, pp. 556–560, 1973.
[40]  E. O. Leidi, M. Silberbush, M. I. M. Soares, and S. H. Lips, “Salinity and nitrogen nutrition studies on peanut and cotton plants,” Journal of Plant Nutrition, vol. 15, pp. 591–604, 1992.
[41]  V. Martinez and A. L?uchli, “Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.),” New Phytologist, vol. 126, no. 4, pp. 609–614, 1994.
[42]  M. K. Abd-Ella and E. E. Shalaby, “Cotton response to salinity and different potassium-sodium ratio in irrigation water,” Journal of Agronomy and Crop Science, vol. 170, pp. 25–31, 1993.
[43]  H. Marschner, Mineral Nutrition of Higher Plants, Academic Press, San Diego, Calif, USA, 2nd edition, 1995.
[44]  V. Chinnusamy, A. Jagendorf, and J.-K. Zhu, “Understanding and improving salt tolerance in plants,” Crop Science, vol. 45, no. 2, pp. 437–448, 2005.
[45]  R. Munns, “Comparative physiology of salt and water stress,” Plant, Cell and Environment, vol. 25, no. 2, pp. 239–250, 2002.
[46]  G. W. Netondo, J. C. Onyango, and E. Beck, “Sorghum and salinity: I. Response of growth, water relations, and ion accumulation to NaCl salinity,” Crop Science, vol. 44, no. 3, pp. 797–805, 2004.
[47]  S. M. Higbie, F. Wang, T. M. Sterling, J. McD. Stewart, and J. Zhang, “Physiological response and genetic diversity of tetraploid cotton to salt stress,” in Proceedings of the Beltwide Cotton Conference, pp. 944–945, National Cotton Council, New Orleans, La, USA, January 2005.
[48]  R. Belkhodja, F. Morales, A. Abadía, J. Gomez-Aparisi, and J. Abadía, “Chlorophyll fluorescence as a possible tool for salinity tolerance screening in barley (Hordeum vulgare L.),” Plant Physiology, vol. 104, no. 2, pp. 667–673, 1994.
[49]  W. Larcher, J. Wagner, and A. Thammathaworn, “Effects of superimposed temperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress,” Journal of Plant Physiology, vol. 136, pp. 317–324, 1990.
[50]  S. Lutts, J. M. Kinet, and J. Bouharmont, “NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance,” Annals of Botany, vol. 78, no. 3, pp. 389–398, 1996.
[51]  C. Lu and J. Zhang, “Thermostability of photosystem II is increased in salt-stressed sorghum,” Australian Journal of Plant Physiology, vol. 25, no. 3, pp. 317–324, 1998.
[52]  P. K. Sharma and D. O. Hall, “Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum,” Journal of Plant Physiology, vol. 138, pp. 614–619, 1991.
[53]  G. Bongi and F. Loreto, “Gas exchange properties of salt-stressed olive (Olea europea L.) leaves,” Journal of Plant Physiology, vol. 90, pp. 1408–1416, 1989.
[54]  A. N. Misra, A. Srivastava, and R. J. Strasser, “Utilization of fast chlorophyll a fluorescence technique in assessing the salt/ion sensitivity of mung bean and Brassica seedlings,” Journal of Plant Physiology, vol. 158, no. 9, pp. 1173–1181, 2001.
[55]  R. M. Smillie and R. Nott, “Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo,” Journal of Plant Physiology, vol. 70, pp. 1049–1054, 1982.
[56]  S. K. Mishra, D. Subrahmanyam, and G. S. Singhal, “Interrelationship between salt and light stress on primary processes of photosynthesis,” Journal of Plant Physiology, vol. 138, pp. 92–96, 1991.
[57]  M. S. Jimenez, A. M. Gonzalez-Rodriguez, D. Morales, M. C. Cid, A. R. Socorro, and M. Caballero, “Evaluation of chlorophyll fluorescence as a tool for salt stress detection in roses,” Photosynthetica, vol. 33, no. 2, pp. 291–301, 1997.
[58]  M. Ashraf and J. W. O'Leary, “Distribution of cations in leaves of salt-tolerant and salt-sensitive lines of sunflower under saline conditions,” Journal of Plant Nutrition, vol. 18, no. 11, pp. 2379–2388, 1995.
[59]  S. Renault, C. Croser, J. A. Franklin, and J. J. Zwiazek, “Effects of NaCl and on red-osier dogwood (Cornus stolonifera Michx) seedlings,” Plant and Soil, vol. 233, no. 2, pp. 261–268, 2001.
[60]  P. Boursier, J. Lynch, A. L?uchli, and E. Epstein, “Chloride partitioning in leaves of salt stressed sorghum, maize, wheat and barley,” Australian Journal of Plant Physiology, vol. 14, pp. 463–473, 1987.
[61]  T. D. Colmer, T. W. M. Fan, R. M. Higashi, and A. L?uchli, “Interactions of Ca2+ and NaCl stress on the ion relations and intracellular pH of Sorghum bicolor root tips: an in vivo 31P-NMR study,” Journal of Experimental Botany, vol. 45, no. 277, pp. 1037–1044, 1994.
[62]  T. D. Colmer, T. W. M. Fan, R. M. Higashi, and A. L?uchli, “Interactive effects of and NaCl salinity on the ionic relations and proline accumulation in the primary root tip of Sorghum bicolor,” Physiologia Plantarum, vol. 97, no. 3, pp. 421–424, 1996.
[63]  G. R. Cramer, A. L?uchli, and V. S. Polito, “Displacement of Ca by Na from the plasmalemma of root cells,” Journal of Plant Physiology, vol. 79, pp. 207–211, 1985.
[64]  V. Martinez and A. L?uchli, “Phosphorus translocation in salt-stressed cotton,” Physiologia Plantarum, vol. 83, pp. 627–632, 1991.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133