全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

多层递阶融合模糊特征映射的模糊C均值聚类算法

DOI: 10.11992/tis.201703047

Keywords: Takagi-Sugeno-Kang (TSK)模糊系统, 主成分分析(PCA), 无监督学习, 模糊C均值聚类
Takagi-Sugeno-Kang (TSK) fuzzy system
, principal component analysis (PCA), unsupervised learning, fuzzy C-means clustering

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对复杂非线性数据的无监督学习问题,提出一种新型的映射方式来有效提高算法对复杂非线性数据的学习能力。以TSK模糊系统的规则前件学习为基础,提出一种新型的模糊特征映射新方法。接着,针对映射之后的数据维度过大问题,引入多层递阶融合的概念,进一步提出基于多层递阶融合的模糊特征映射新方法,从而有效避免了因单层模糊特征映射之后特征维数过高而导致的数据混乱和冗余的问题。最后与模糊C均值算法相结合,提出基于多层递阶融合模糊特征映射的模糊C均值聚类算法。实验研究表明,文中算法相比于经典模糊聚类方法,有着更加优越、稳定的性能。
In this paper, we propose a novel feature mapping technique called multilayer hierarchical fusion fuzzy feature mapping for the unsupervised learning of complex nonlinear data and combine it with the classical fuzzy C-means clustering. Based on the regular antecedent learning of the Takagi-Sugeno-Kang (TSK) fuzzy system, we first propose a novel fuzzy feature mapping method. Then, to address big data dimensions by fuzzy feature mapping, we propose a fuzzy feature mapping mechanism based on multilayer hierarchical fusion. This mechanism combines fuzzy feature mapping with principal component analysis (PCA), thereby avoiding the data confusion and redundancy caused by the high dimensionality of single-layer fuzzy feature mapping. Finally, we develop a novel FCM clustering algorithm based on multilayered hierarchical fusion feature mapping. The experimental results show that, in comparison with classical fuzzy clustering methods, the performance of the proposed algorithm is superior and more stable

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133