A rabbit model of Alzheimer’s disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease, including learning and memory changes. Although we have shown 2% cholesterol and copper in water can retard learning, other studies show feeding dietary cholesterol before learning can improve acquisition whereas feeding cholesterol after learning can degrade long-term memory. We explored this issue by manipulating cholesterol concentration and duration following classical trace conditioning of the rabbit’s nictitating membrane response and assessed conditioned responding after eight weeks on cholesterol. First, rabbits given trace classical conditioning followed by 0.5%, 1%, or 2% cholesterol for eight weeks showed body weight and serum cholesterol levels that were a function of dietary cholesterol. Although all concentrations of cholesterol showed some sign of retarding long-term memory, the level of memory retardation was correlated with serum cholesterol levels. Second, rabbits given trace conditioning followed by different durations of a 2% cholesterol diet combined with different durations of a 0% control diet for 8 weeks showed duration and timing of a 2% cholesterol diet were important in affecting recall. The data support the idea that dietary cholesterol may retard long-term memory. 1. Introduction In rabbits fed 2% cholesterol for as little as eight weeks, there are as many as sixteen different indices of pathology that are similar to those seen in Alzheimer’s Disease (AD) including intracellular and extracellular Aβ, breaches of the blood brain barrier, activation of microglia, apoptosis, increased levels of Apolipoprotein E, phosphorylated tau protein, changes in the cerebrovasculature, and increases in ventricular volume [1–12]. Coinciding with these changes in brain pathology, there have been reports of detrimental effects on learning [6, 13–16]. Nevertheless, research with this and other animal models suggests that modifying dietary cholesterol can in many cases improve learning and memory. For instance, increasing cholesterol in young DBA/2 mutant mice improves performance on the Morris water maze—a spatial learning task that is normally impaired in this mutant [17, 18]. Feeding cholesterol to young, normal rats also improves performance on the Morris water maze [19]. Feeding cholesterol to rats that are either deficient in cholesterol or have cholesterol synthesis blocked reverses problems with learning and memory [20–23]. We have also shown that feeding rabbits cholesterol can facilitate classical
References
[1]
J. R. P. Prasanthi, B. Dasari, G. Marwarha et al., “Caffeine protects against oxidative stress and Alzheimer's disease-like pathology in rabbit hippocampus induced by cholesterol-enriched diet,” Free Radical Biology and Medicine, vol. 49, no. 7, pp. 1212–1220, 2010.
[2]
R. P. Jaya Prasanthi, E. Schommer, S. Thomasson, A. Thompson, G. Feist, and O. Ghribi, “Regulation of β-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer's disease,” Mechanisms of Ageing and Development, vol. 129, no. 11, pp. 649–655, 2008.
[3]
D. S. Woodruff-Pak, “Animal models of Alzheimer's disease: therapeutic implications,” Journal of Alzheimer's Disease, vol. 15, no. 4, pp. 507–521, 2008.
[4]
D. S. Woodruff-Pak, A. Agelan, and L. D. Valle, “A rabbit model of Alzheimer's disease: valid at neuropathological, cognitive, and therapeutic levels,” Journal of Alzheimer's Disease, vol. 11, no. 3, pp. 371–383, 2007.
[5]
O. Ghribi, M. Y. Golovko, B. Larsen, M. Schrag, and E. J. Murphy, “Deposition of iron and β-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets,” Journal of Neurochemistry, vol. 99, no. 2, pp. 438–449, 2006.
[6]
D. L. Sparks and B. G. Schreurs, “Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 19, pp. 11065–11069, 2003.
[7]
P. Zatta, P. Zambenedetti, M. P. Stella, and F. Licastro, “Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits,” Journal of Alzheimer's Disease, vol. 4, no. 1, pp. 1–9, 2002.
[8]
D. L. Sparks, Y. M. Kuo, A. Roher, T. Martin, and R. J. Lukas, “Alterations of Alzheimer's disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations,” Annals of the New York Academy of Sciences, vol. 903, pp. 335–344, 2000.
[9]
D. L. Sparks, “Dietary cholesterol induces Alzheimer-like β-amyloid immunoreactivity in rabbit brain,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 7, no. 3, pp. 255–266, 1997.
[10]
D. L. Sparks, S. W. Scheff, J. C. Hunsaker, H. Liu, T. Landers, and D. R. Gross, “Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol,” Experimental Neurology, vol. 126, no. 1, pp. 88–94, 1994.
[11]
S. K. Lemieux, C. A. Smith-Bell, J. R. Wells et al., “Neurovascular changes measured by time-of-flight MR angiography in cholesterol-fed rabbits with cortical amyloid β-peptide accumulation,” Journal of Magnetic Resonance Imaging, vol. 32, no. 2, pp. 306–314, 2010.
[12]
S. Deci, S. K. Lemieux, C. A. Smith-Bell, D. L. Sparks, and B. G. Schreurs, “Cholesterol increases ventricular volume in a rabbit model of Alzheimer's Disease,” Journal of Alzheimer's Disease, vol. 29, no. 2, pp. 283–292, 2012.
[13]
C. R. Hooijmans, C. E. E. M. Van der Zee, P. J. Dederen et al., “DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in / mice,” Neurobiology of Disease, vol. 33, no. 3, pp. 482–498, 2009.
[14]
I. Lefterov, N. F. Fitz, A. Cronican, P. Lefterov, M. Staufenbiel, and R. Koldamova, “Memory deficits in APP23/Abca1+/- mice correlate with the level of Aβ oligomers,” ASN Neuro, vol. 1, no. 2, Article ID e00006, pp. 65–76, 2009.
[15]
A. C. Granholm, H. A. Bimonte-Nelson, A. B. Moore, M. E. Nelson, L. R. Freeman, and K. Sambamurti, “Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat,” Journal of Alzheimer's Disease, vol. 14, no. 2, pp. 133–145, 2008.
[16]
V. Micale, G. Scapagnini, C. Colombrita, C. Mazzola, D. L. Alkon, and F. Drago, “Behavioral effects of dietary cholesterol in rats tested in experimental models of mild stress and cognition tasks,” European Neuropsychopharmacology, vol. 18, no. 6, pp. 462–471, 2008.
[17]
S. Miller and J. M. Wehner, “Cholesterol treatment facilitates spatial learning performance in DBA/2Ibg mice,” Pharmacology Biochemistry and Behavior, vol. 49, no. 1, pp. 257–261, 1994.
[18]
M. Upchurch and J. M. Wehner, “DBA/2Ibg mice are incapable of cholinergically-based learning in the Morris water task,” Pharmacology Biochemistry and Behavior, vol. 29, no. 2, pp. 325–329, 1988.
[19]
F. Dufour, Q. Y. Liu, P. Gusev, D. Alkon, and M. Atzori, “Cholesterol-enriched diet affects spatial learning and synaptic function in hippocampal synapses,” Brain Research, vol. 1103, no. 1, pp. 88–98, 2006.
[20]
V. V?ikar, H. Rauvala, and E. Ikonen, “Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease,” Behavioural Brain Research, vol. 132, no. 1, pp. 1–10, 2002.
[21]
G. Xu, R. J. Servatius, S. Shefer et al., “Relationship between abnormal cholesterol synthesis and retarded learning in rats,” Metabolism: Clinical and Experimental, vol. 47, no. 7, pp. 878–882, 1998.
[22]
Y. Endo, J. I. Nishimura, and F. Kimura, “Impairment of maze learning in rats following long-term glucocorticoid treatments,” Neuroscience Letters, vol. 203, no. 3, pp. 199–202, 1996.
[23]
W. T. O'Brien, G. Xu, A. Batta et al., “Developmental sensitivity of associative learning to cholesterol synthesis inhibitors,” Behavioural Brain Research, vol. 129, no. 1-2, pp. 141–152, 2002.
[24]
B. G. Schreurs, C. A. Smith-Bell, D. S. Darwish, G. Stankovic, and D. L. Sparks, “High dietary cholesterol facilitates classical conditioning of the rabbit's nictitating membrane response,” Nutritional Neuroscience, vol. 10, no. 1-2, pp. 31–43, 2007.
[25]
B. G. Schreurs, C. A. Smith-Bell, D. S. Darwish et al., “Cholesterol enhances classical conditioning of the rabbit heart rate response,” Behavioural Brain Research, vol. 181, no. 1, pp. 52–63, 2007.
[26]
B. G. Schreurs, C. A. Smith-Bell, J. Lochhead, and D. L. Sparks, “Cholesterol modifies classical conditioning of the rabbit (Oryctolagus cuniculus) nictitating membrane response,” Behavioral Neuroscience, vol. 117, no. 6, pp. 1220–1232, 2003.
[27]
D. S. Darwish, D. Wang, G. W. Konat, and B. G. Schreurs, “Dietary cholesterol impairs memory and memory increases brain cholesterol and sulfatide levels,” Behavioral Neuroscience, vol. 124, no. 1, pp. 115–123, 2010.
[28]
D. Zambón, M. Quintana, P. Mata et al., “Higher incidence of mild cognitive impairment in familial hypercholesterolemia,” The American Journal of Medicine, vol. 123, no. 3, pp. 267–274, 2010.
[29]
A. Solomon, I. K?reholt, T. Ngandu et al., “Serum total cholesterol, statins and cognition in non-demented elderly,” Neurobiology of Aging, vol. 30, no. 6, pp. 1006–1009, 2009.
[30]
F. C. Goldstein, A. V. Ashley, Y. W. Endeshaw, J. Hanfelt, J. J. Lah, and A. I. Levey, “Effects of hypertension and hypercholesterolemia on cognitive functioning in patients with Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 22, no. 4, pp. 336–342, 2008.
[31]
A. Solomon, I. K?reholt, T. Ngandu et al., “Serum cholesterol changes after midlife and late-life cognition: twenty-one-year follow-up study,” Neurology, vol. 68, no. 10, pp. 751–756, 2007.
[32]
T. M. A. Bocan, S. B. Mueller, M. J. Mazur, P. D. Uhlendorf, E. Q. Brown, and K. A. Kieft, “The relationship between the degree of dietary-induced hypercholesterolemia in the rabbit and atherosclerotic lesion formation,” Atherosclerosis, vol. 102, no. 1, pp. 9–22, 1993.
[33]
K. Riedmüller, S. Metz, G. A. Bonaterra et al., “Cholesterol diet and effect of long-term withdrawal on plaque development and composition in the thoracic aorta of New Zealand White rabbits,” Atherosclerosis, vol. 210, no. 2, pp. 407–413, 2010.
[34]
D. J. Lamb, T. Y. Avades, and G. A. A. Ferns, “Biphasic modulation of atherosclerosis induced by graded dietary copper supplementation in the cholesterol-fed rabbit,” International Journal of Experimental Pathology, vol. 82, no. 5, pp. 287–294, 2001.
[35]
P. D. Henry and K. I. Bentley, “Suppression of atherogenesis in cholesterol-fed rabbit treated with nifedipine,” Journal of Clinical Investigation, vol. 68, no. 5, pp. 1366–1369, 1981.
[36]
Y. Huang, K. E. Walker, F. Hanley, J. Narula, S. R. Houser, and T. N. Tulenko, “Cardiac systolic and diastolic dysfunction after a cholesterol-rich diet,” Circulation, vol. 109, no. 1, pp. 97–102, 2004.
[37]
B. G. Schreurs and D. L. Alkon, “US-US conditioning of the rabbit's nictitating membrane response: emergence of a conditioned response without alpha conditioning,” Psychobiology, vol. 18, no. 3, pp. 312–320, 1990.
[38]
S. R. Coleman and I. Gormezano, “Classical conditioning of the rabbit's (Oryctolagus cuniculus) nictitating membrane response under symmetrical CS-US interval shifts,” Journal of Comparative and Physiological Psychology, vol. 77, no. 3, pp. 447–455, 1971.
[39]
I. Gormezano, “Classical conditioning,” in Experimental Methods and Instrumentation in Psychology, J. B. Sidowski, Ed., pp. 385–420, McGraw-Hill, New York, NY, USA, 1966.
[40]
I. Gormezano and C. M. Gibbs, “Transduction of the rabbit's nictitating membrane response,” Behavior Research Methods, Instruments, & Computers, vol. 20, pp. 18–21, 1988.
[41]
D. S. Woodruff-Pak and J. F. Disterhoft, “Where is the trace in trace conditioning?” Trends in Neurosciences, vol. 31, no. 2, pp. 105–112, 2008.
[42]
D. L. Sparks, “Intraneuronal β-amyloid immunoreactivity in the CNS,” Neurobiology of Aging, vol. 17, no. 2, pp. 291–299, 1996.
[43]
A. P. Weible, M. D. McEchron, and J. F. Disterhoft, “Cortical involvement in acquisition and extinction of trace eyeblink conditioning,” Behavioral Neuroscience, vol. 114, no. 6, pp. 1058–1067, 2000.
[44]
D. Holland, J. B. Brewer, D. J. Hagler, C. Fenema-Notestine, and A. M. Dale, “Subregional neuroanatomical change as a biomarker for Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20954–20959, 2009.
[45]
H. Zheng, C. Zhang, W. Yang et al., “Fat and cholesterol diet induced lipid metabolic disorders and insulin resistance in rabbit,” Experimental and Clinical Endocrinology and Diabetes, vol. 117, no. 8, pp. 400–405, 2009.
[46]
D. L. Sparks, “Cholesterol metabolism and brain amyloidosis: evidence for a role of copper in the clearance of Aβ through the liver,” Current Alzheimer Research, vol. 4, no. 2, pp. 165–169, 2007.
[47]
J. C. Russell and S. D. Proctor, “Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis,” Cardiovascular Pathology, vol. 15, no. 6, pp. 318–330, 2006.
[48]
A. E. Yanni, “The laboratory rabbit: an animal model of atherosclerosis research,” Laboratory Animals, vol. 38, no. 3, pp. 246–256, 2004.
[49]
D. L. Sparks, T. A. Martin, D. R. Gross, and J. C. Hunsaker, “Link between heart disease, cholesterol, and Alzheimer's disease: a review,” Microscopy Research and Technique, vol. 50, no. 4, pp. 287–290, 2000.
[50]
B. G. Schreurs, “Long-term memory and extinction of rabbit nictitating membrane trace conditioning,” Learning and Motivation, vol. 29, no. 1, pp. 68–82, 1998.
[51]
B. G. Schreurs, “Long-term memory and extinction of the classically conditioned rabbit nictitating membrane response,” Learning and Motivation, vol. 24, no. 3, pp. 293–302, 1993.
[52]
K. J. Williams, J. E. Feig, and E. A. Fisher, “Rapid regression of atherosclerosis: insights from the clinical and experimental literature,” Nature Clinical Practice Cardiovascular Medicine, vol. 5, no. 2, pp. 91–102, 2008.
[53]
K. Prasad, “Regression of hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed,” Atherosclerosis, vol. 197, no. 1, pp. 34–42, 2008.
[54]
Y. Stein and O. Stein, “Does therapeutic intervention achieve slowing of progression or bona fide regression of atherosclerotic lesions?” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 2, pp. 183–188, 2001.
[55]
C. W. M. Adams and R. S. Morgan, “Regression of atheroma in the rabbit,” Atherosclerosis, vol. 28, no. 4, pp. 399–404, 1977.
[56]
B. Collin, D. Busseuil, M. Zeller et al., “Increased superoxide anion production is associated with early atherosclerosis and cardiovascular dysfunctions in a rabbit model,” Molecular and Cellular Biochemistry, vol. 294, no. 1-2, pp. 225–235, 2007.
[57]
B. J. Van Lenten, A. C. Wagner, M. Navab et al., “Lipoprotein inflammatory properties and serum amyloid A levels but not cholesterol levels predict lesion area in cholesterol-fed rabbits,” Journal of Lipid Research, vol. 48, no. 11, pp. 2344–2353, 2007.
[58]
N. C. Tronson and J. R. Taylor, “Molecular mechanisms of memory reconsolidation,” Nature Reviews Neuroscience, vol. 8, no. 4, pp. 262–275, 2007.
[59]
P. W. Frankland and B. Bontempi, “The organization of recent and remote memories,” Nature Reviews Neuroscience, vol. 6, no. 2, pp. 119–130, 2005.
[60]
M. E. Bouton, “Context and behavioral processes in extinction,” Learning and Memory, vol. 11, no. 5, pp. 485–494, 2004.
[61]
J. W. Rudy, N. C. Huff, and P. Matus-Amat, “Understanding contextual fear conditioning: insights from a two-process model,” Neuroscience and Biobehavioral Reviews, vol. 28, no. 7, pp. 675–685, 2004.
[62]
R. J. Servatius and K. D. Beck, “Mild interoceptive stressors affect learning and reactivity to contextual cues: toward understanding the development of unexplained illnesses,” Neuropsychopharmacology, vol. 30, no. 8, pp. 1483–1491, 2005.
[63]
A. M. Hein and M. K. O'Banion, “Neuroinflammation and memory: the role of prostaglandins,” Molecular Neurobiology, vol. 40, no. 1, pp. 15–32, 2009.
[64]
R. M. Barrientos, E. A. Higgins, J. C. Biedenkapp et al., “Peripheral infection and aging interact to impair hippocampal memory consolidation,” Neurobiology of Aging, vol. 27, no. 5, pp. 723–732, 2006.
[65]
W. H. Cai, J. Blundell, J. Han, R. W. Greene, and C. M. Powell, “Postreactivation glucocorticoids impair recall of established fear memory,” Journal of Neuroscience, vol. 26, no. 37, pp. 9560–9566, 2006.
[66]
S. J. Hopkins, “Central nervous system recognition of peripheral inflammation: a neural, hormonal collaboration,” Acta Bio-Medica : Atenei Parmensis, vol. 78, supplement 1, pp. 231–247, 2007.
[67]
S. Siegel and B. M. C. Ramos, “Applying laboratory research: drug anticipation and the treatment of drug addiction,” Experimental and Clinical Psychopharmacology, vol. 10, no. 3, pp. 162–183, 2002.
[68]
S. C. Woods and D. S. Ramsay, “Pavlovian influences over food and drug intake,” Behavioural Brain Research, vol. 110, no. 1-2, pp. 175–182, 2000.
[69]
S. Siegel, “Multiple chemical sensitivity as a conditional response,” Toxicology and Industrial Health, vol. 15, no. 3-4, pp. 323–330, 1999.
[70]
S. H. Wang and R. G. M. Morris, “Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation,” Annual Review of Psychology, vol. 61, pp. 49–79, 2010.
[71]
A. Takashima, I. L. C. Nieuwenhuis, O. Jensen, L. M. Talamini, M. Rijpkema, and G. Fernández, “Shift from hippocampal to neocortical centered retrieval network with consolidation,” Journal of Neuroscience, vol. 29, no. 32, pp. 10087–10093, 2009.
[72]
J. D?biec, V. Doyère, K. Nader, and J. E. LeDoux, “Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3428–3433, 2006.
[73]
M. C. Inda, J. M. Delgado-Garcia, and A. M. Carrion, “Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis,” Journal of Neuroscience, vol. 25, no. 8, pp. 2070–2080, 2005.
[74]
J. P. Johansen, C. K. Cain, L. E. Ostroff, and J. E. Ledoux, “Molecular mechanisms of fear learning and memory,” Cell, vol. 147, no. 3, pp. 509–524, 2011.
[75]
K. Nader and O. Hardt, “A single standard for memory: the case for reconsolidation,” Nature Reviews Neuroscience, vol. 10, no. 3, pp. 224–234, 2009.
[76]
S. Duvarci, C. Ben Mamou, and K. Nader, “Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala,” European Journal of Neuroscience, vol. 24, no. 1, pp. 249–260, 2006.
[77]
A. Suzuki, S. A. Josselyn, P. W. Frankland, S. Masushige, A. J. Silva, and S. Kida, “Memory reconsolidation and extinction have distinct temporal and biochemical signatures,” Journal of Neuroscience, vol. 24, no. 20, pp. 4787–4795, 2004.
[78]
O. Ghribi, B. Larsen, M. Schrag, and M. M. Herman, “High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus,” Experimental Neurology, vol. 200, no. 2, pp. 460–467, 2006.
[79]
K. Robleto, A. M. Poulos, and R. F. Thompson, “Brain mechanisms of extinction of the classically conditioned eyeblink response,” Learning and Memory, vol. 11, no. 5, pp. 517–524, 2004.
[80]
S. P. Perrett and M. D. Mauk, “Extinction of conditioned eyelid responses requires the anterior lobe of cerebellar cortex,” Journal of Neuroscience, vol. 15, no. 3 I, pp. 2074–2080, 1995.
[81]
A. R. Delamater, “Experimental extinction in Pavlovian conditioning: behavioural and neuroscience perspectives,” Quarterly Journal of Experimental Psychology Section B, vol. 57, no. 2, pp. 97–132, 2004.
[82]
I. P. Pavlov, Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex. (G. V. Anrep, Trans.), Oxford University Press, London, UK, 1927.
[83]
R. A. Rescorla and A. R. Wagner, “A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement,” in Classicl Conditioning II: Current Research and Theory, A. H. Black and W. F. Prokasy, Eds., pp. 64–99, Appleton-Century-Crofts, New York, NY, USA, 1972.
[84]
M. Heverin, S. Meaney, D. Lütjohann, U. Diczfalusy, J. Wahren, and I. Bj?rkhem, “Crossing the barrier: net flux of 27-hydroxycholesterol into the human brain,” Journal of Lipid Research, vol. 46, no. 5, pp. 1047–1052, 2005.
[85]
S. Yehuda, S. Rabinovitz, and D. I. Mostofsky, “Mediation of cognitive function by high fat diet following stress and inflammation,” Nutritional Neuroscience, vol. 8, no. 5-6, pp. 309–315, 2005.
[86]
S. M. A. Rahman, A. M. Van Dam, M. Schultzberg, and M. Crisby, “High cholesterol diet results in increased expression of interleukin-6 and caspase-1 in the brain of apolipoprotein E knockout and wild type mice,” Journal of Neuroimmunology, vol. 169, no. 1-2, pp. 59–67, 2005.
[87]
B. G. Schreurs, C. A. Smith-Bell, D. S. Darwish, G. Stankovic, and D. L. Sparks, “Classical conditioning of the rabbit's nictitating membrane response is a function of the duration of dietary cholesterol,” Nutritional Neuroscience, vol. 10, no. 3-4, pp. 159–168, 2007.
[88]
Z. Berkman, G. Tanriover, G. Acar, L. Sati, T. Altug, and R. Demir, “Changes in the brain cortex of rabbits on a cholesterol-rich diet following supplementation with a herbal extract of Tribulus terrestris,” Histology and Histopathology, vol. 24, no. 6, pp. 683–692, 2009.