|
南京师范大学学报(自然科学版) 2015
丢番图方程ax+by=n的一个注记(英文)Keywords: 丢番图方程, 生成函数, 留数定理Diophantine equation, generating function, Residue theorem Abstract: 令[a,b]为互素的正整数,[n]为非负整数. [D(a,b;n)]表示不定方程[ax+by=n]的非负整数解[(x,y)]的个数. Tripathi证明了[D(a,b;n)=nab+121a+1b+1aj=1a-1ζ-jna1-ζbja+1bk=1b-1ζ-knb1-ζakb],其中[ζm=e2πi/m]. 在本文中,我们建立了[D(a,b;n)]的递推关系,从而给出了上述结论的新证明.Let a,b be positive integers such that(a,b)=1 and let n be a non-negative integer. Define [D(a,b;n)] to be the number of non-negative integer solutions(x,y)of the Diophantine equation ax+by=n. Tripathi proved that[D(a,b;n)=nab+121a+1b+1aj=1a-1ζ-jna1-ζbja+1bk=1b-1ζ-knb1-ζakb],where [ζm=e2πi/m]. In this note,we put forward a recurrence relation of [D(a,b;n)],thus giving a new proof of above formula
|