|
南京师范大学学报(自然科学版) 2015
关于Diophantine方程x3-1=13qy2的整数解Keywords: Diophantine方程, 奇素数, 整数解, 同余式, 平方剩余, 递归序列Diophantine equation, odd prime, integer solution, congruence, quadratic remainder, recurrent sequence Abstract: 设[D=i=1spi(s≥2)],pi≡1(mod 6)(1≤i≤s)为不同的奇素数. 关于Diophantine方程x3-1=Dy2的初等解法至今仍未解决. 主要利用同余式、平方剩余、Pell方程的解的性质、递归序列,证明了q≡7(mod 24)为奇素数,[q13=-1]时,Diophantine方程x3-1=13qy2仅有整数解(x,y)=(1,0).Let [D=i=1spi(s≥2)],pi≡1(mod 6)(i=1,2,…,s),pi(i=1,2,…,s)be different odd primes. The primary solution of the Diophantine equation x3-1=Dy2 still remains unresolved. We use congruence,quadratic residue,some properties of the solutions to Pell equation and recurrent sequence,to prove that the Diophantine equation x3-1=13qy2 only has integer solution(x,y)=(1,0)when q be odd prime with q≡7(mod 24) and [q13=-1]
|