全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

荔波喀斯特森林群落的生物量模型

DOI: 10.13360/j.issn.1000-8101.2015.03.030

Keywords: 喀斯特, 森林群落, 生物量模型, 幂回归
karst
, forest community, biomass model, the power regression model

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了准确估算喀斯特青冈栎-黄樟群落生物量,在贵州茂兰喀斯特自然保护区内,选取常绿落叶阔叶林青冈栎-黄樟群落作为基础群落,以D、D2H作为自变量,利用5种函数方程拟合群落生物量模型。结果表明:通过对标准木生物量的回归分析,以幂回归模型为最优,得出青冈栎-黄樟群落各组分生物量最优方程:W干材=168.27(D2H)0.849 6,W树枝=44.497(D2H)0.835 9,W树叶=19.705(D2H)0.821 7,W树皮=17.660(D2H)0.852 8,W地上=250.06(D2H)0.844 3。
In order to accurately evaluate the biomass of Cyclobalanopsis glauca and Cinnamomum parthenoxylon community in karst, we selected evergreen and deciduous broad??leaved forest C. glauca and C. parthenoxylon community in Maolan Karst Nature Reserve in Guizhou, as a basis for community, and took D,D2H as independent variables,used five kinds of functional equation to fit community biomass model. The results showed that the power regression model was optimal based on regressing analysis of the standard wood biomass. We derived the each component optimal biomass equations of C. glauca and C. parthenoxylon community as WBolt=168.27(D2H)0.849 6;WBranch=44.497(D2H)0.835 9,WLeaf=19.705(D2H)0.821 7,WBark=17.660(D2H)0.852 8,WAbove ground=250.06(D2H)0.844 3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133