|
- 2018
一种改进的头脑风暴优化算法DOI: DOI:10.14081/j.cnki.hgdxb.2018.06.009 Keywords: 群体智能, 头脑风暴过程, 头脑风暴优化算法, 分组策略, 可变最大步长swarmintelligence, brainstormingprocess, brainstormingoptimizationalgorithm, groupstrategy, variable maximumstep Abstract: 针对头脑风暴优化(BSO)算法精度较差、后期收敛速度慢的问题,提出了一种改进的BSO(MBSO) 算法. MBSO算法通过对种群分组策略概率参数的调节,改变个体生成方式调节参与全局和局部搜索的个体比 例,算法前期加强全局搜索后期加强局部搜索,有效避免陷入局部最优.同时MBSO算法根据搜索所处不同阶 段采用可变最大步长的策略加速算法收敛并提高了优化精度.采用6个标准测试函数对MBSO算法搜索性能进 行了测试,与原始BSO算法、粒子群优化(PSO)算法和差分进化(DE)算法结果进行比较实验.仿真结果表 明,MBSO算法可以有效地避免陷入局部最优,稳定地找到更好的最优值,收敛速度显著加快. MBSO算法在 优化问题中表现出了优异的性能和巨大的潜力.Aimingatsolvingtheproblemofpooraccuracyandslowconvergenceinlaterperiodofbrainstormingoptimi? zation(BSO)algorithm,amodifiedBSO(MBSO)algorithmisproposedbyadjustingtheprobabilityparameterofthepopu? lationgroupingstrategyandbyusingavariablemaximumstep.Thenewpopulationgroupstrategystrengthenedtheglob? alsearchintheearlystage,andenhancedthelocalsearchinthelaterstage,whicheffectivelyavoidedthesearchbeing trappedinthelocaloptimum.Atthesametime,theMBSOalgorithmusedvariablemaximumsteplengthaccordingtothe differentstagesofthealgorithm,whichacceleratedtheconvergenceandimprovedtheoptimizationaccuracy.Theexperi? mentalresultsof6typicalbenchmarkfunctionsshowedthattheproposedalgorithmissuperiortotheoriginalBSO,parti? cleswarmoptimization(PSO)algorithmanddifferentialevolution(DE)algorithminsolvingthelocaloptimumproblems, convergingtobetteroptimalvalues,andreducingthesearchtime.TheexcellentperformanceoftheMBSOalgorithm showsitsgreatpotentialin optimizationproblems.
|