全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于图像处理和压缩感知的鱼群低溶氧胁迫异常行为检测方法

DOI: 10.3785/j.issn.1008-9209.2018.06.113

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了克服人工观测鱼群异常行为费时费力的问题,本文提出了一种基于图像处理和压缩感知算法的鱼群低溶氧胁迫异常行为的自动检测方法。以锦鲤(Cyprinus carpio)为研究对象,通过获取常氧和低氧2 种情况下的鱼群运动视频图像,利用图像处理技术得到鱼群位置直方图,提取鱼群位置的均值、方差、歪斜度、峰态和能量5 个参数,构成每幅图像的鱼群运动特征参数。在此基础上构建数据词典矩阵,并利用压缩感知分类方法实现低溶氧胁迫下的鱼群异常行为检测。实验结果表明,该方法能有效实现低溶氧胁迫下的鱼群异常行为检测,准确率达到98.50%。 通讯作者: 于欣(https://orcid.org/0000-0002-8648-0812) E-mail: yuxin@zju.edu.cn
Abstract: In order to overcome the time-consuming and laborious problems of artificial observation, we proposed an automatic detection method of abnormal behavior of fish school under low dissolved oxygen stress based on image processing and compressed sensing algorithm. Taking Cyprinus carpio as the research object, by obtaining the video images of fish school behaviors under two conditions of normoxia and hypoxia, we used the image processing technology to get the location histogram of fish school, of which the average, variance, skewness, kurtosis and energy were extracted to form the fish movement characteristic parameters of each image. On this basis, the data dictionary matrix was constructed, and the abnormal behavior detection of fish school under low dissolved oxygen stress was implemented by compressed sensing classification. The results showed that the detection method can effectively detect the abnormal behavior of fish school under the low dissolved oxygen stress, with the detection accuracy rate of 98.50%. Key words: image processing compressed sensing fish school behavior low dissolved oxygen stress abnormal behavior detection

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133