全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

基于高光谱图像技术的小麦种子分类识别研究

DOI: 10.7606/j.issn.1009-1041.2019.01.13

Keywords: 高光谱图像,小麦种子,多籽粒分类,主成分分析,支持向量机

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了探讨高光谱图像技术在小麦种子分类识别中应用的可行性,采集了河南地区主要种植的7个小麦品种的种子高光谱图像及900~1 700 nm范围的光谱信息,建立了主成分分析法(PCA)-支持向量机(SVM)分类模型。运用PCA对光谱数据进行降维处理,结合SVM模型比较了不同实验条件下小麦种子分类准确率以及在最佳条件下3个、4个和6个品种种子的分类准确率。结果显示,3个品种间种子分类准确率除个别外平均达到95%以上,4个品种间种子分类准确率在80%左右,6个品种间种子分类准确率在66%左右。这说明充分利用光谱信息可以对3个或4个小麦品种进行多籽粒分类。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133