|
- 2019
基于高光谱图像技术的小麦种子分类识别研究DOI: 10.7606/j.issn.1009-1041.2019.01.13 Keywords: 高光谱图像,小麦种子,多籽粒分类,主成分分析,支持向量机 Abstract: 为了探讨高光谱图像技术在小麦种子分类识别中应用的可行性,采集了河南地区主要种植的7个小麦品种的种子高光谱图像及900~1 700 nm范围的光谱信息,建立了主成分分析法(PCA)-支持向量机(SVM)分类模型。运用PCA对光谱数据进行降维处理,结合SVM模型比较了不同实验条件下小麦种子分类准确率以及在最佳条件下3个、4个和6个品种种子的分类准确率。结果显示,3个品种间种子分类准确率除个别外平均达到95%以上,4个品种间种子分类准确率在80%左右,6个品种间种子分类准确率在66%左右。这说明充分利用光谱信息可以对3个或4个小麦品种进行多籽粒分类。
|