全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Flight Control Design for a Tailless Aircraft Using Eigenstructure Assignment

DOI: 10.1155/2011/549131

Full-Text   Cite this paper   Add to My Lib

Abstract:

We apply eigenstructure assignment to the design of a flight control system for a wind tunnel model of a tailless aircraft. The aircraft, known as the innovative control effectors (ICEs) aircraft, has unconventional control surfaces plus pitch and yaw thrust vectoring. We linearize the aircraft in straight and level flight at an altitude of 15,000 feet and Mach number 0.4. Then, we separately design flight control systems for the longitudinal and lateral dynamics. We use a control allocation scheme with weights so that the lateral pseudoinputs are yaw and roll moment, and the longitudinal pseudoinput is pitching moment. In contrast to previous eigenstructure assignment designs for the ICE aircraft, we consider the phugoid mode, thrust vectoring, and stability margins. We show how to simultaneously stabilize the phugoid mode, satisfy MIL-F-8785C mode specifications, and satisfy MIL-F-9490D phase and gain margin specifications. We also use a cstar command system that is preferable to earlier pitch-rate command systems. Finally, we present simulation results of the combined longitudinal/lateral flight control system using a full 6DOF nonlinear simulation with approximately 20,000 values for the aerodynamic coefficients. Our simulation includes limiters on actuator deflections, deflection rates, and control system integrators. 1. Introduction We consider the design of a flight control system using eigenstructure assignment for a wind tunnel model of the innovative control effectors (ICEs) aircraft. This tailless aircraft program was first described by Dorsett and Mehl [1] and by Dorsett et al. [2]. The ICE aircraft has many unconventional control surfaces plus pitch and yaw thrust vectoring. Several authors have proposed flight control system designs for the ICE aircraft. Ngo et al. [3] use dynamic inversion with structured singular value synthesis. However, the authors remove the bank angle equation from the model which causes an unstable complex mode to be replaced with an unstable real mode. This occurs because the ICE aircraft does not exhibit the conventional real spiral mode. Sparks [4] uses linear parameter-varying control. Schumacher and Johnson [5] use dynamic inversion with adaptation for self reconfiguring. Shtessel et al. [6] propose reconfigurable sliding mode control with direct adaptation. Hess et al. [7] use sliding mode control with asymptotic observers. However, the results are based only upon linear simulation. The only previous design using eigenstructure assignment was proposed by Jones et al. [8]. The main emphasis of [8] is a method

References

[1]  K. M. Dorsett and D. R. Mehl, “Innovative control effectors (ICE),” Tech. Rep. WL-TR-96-3043, Wright Laboratory, Air ForceMaterial Command, 1996.
[2]  K. M. Dorsett, S. P. Fears, and H. P. Houlden, “Innovative control effectors (ICE) phase III,” Tech. Rep. WL-TR-3059, Wright Laboratory, Air Force Material Command, 1997.
[3]  A. N. Ngo, W. C. Reigelsperger, and S. S. Banda, “Multivariable control law design for a tailless aircraft,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, San Diego, Calif, USA, 1996, AIAA Paper 96-3866.
[4]  A. G. Sparks, “A gain scheduled control law for a tailless aircraft,” in Proceedings of the IEEE International Conference on Control Applications, pp. 674–678, Trieste, Italy, 1998.
[5]  C. Schumacher and C. D. Johnson, “PI control of a tailless fighter aircraft with dynamic inversion and neural networks,” in Proceedings of the American Control Conference, pp. 4173–4177, San Diego, Calif, USA, June 1999.
[6]  Y. Shtessel, J. Buffington, and S. Banda, “Tailless aircraft flight control using multiple time scale reconfigurable sliding modes,” IEEE Transactions on Control Systems Technology, vol. 10, no. 2, pp. 288–296, 2002.
[7]  R. A. Hess, T. K. Vetter, and S. R. Wells, “Design and evaluation of a damage tolerant flight control system,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, Providence, RI, USA, 2004, AIAA Paper 2004-4872.
[8]  C. D. C. Jones, M. H. Lowenberg, and T. S. Richardson, “Dynamic state-feedback gain scheduled control of the ICE 101-TV,” in Proceedings of the AIAA Guidance, Navigation, and Control Conference, pp. 49–63, August 2004, AIAA Paper 2004-4754.
[9]  A. N. Andry Jr., E. Y. Shaprio, and J. C. Chung, “Eigenstructure assignment for linear systems,” IEEE Transactions on Aerospace and Electronic Systems, vol. 19, no. 5, pp. 711–729, 1983.
[10]  J. B. Davidson and D. Andrisani, “Lateral-directional eigenvector flying qualities guidelines for high performance aircraft,” Tech. Rep. NASA Technical Memorandum 110306, NASA Langley Research Center, 1996.
[11]  L. G. Malcom and H. N. Tobie, “New short period handling quality criterion for fighter aircraft,” Tech. Rep., The Boeing Company, 1965.
[12]  “Military specification flying qualities of piloted airplanes,” Tech. Rep. MIL-F-8785C, 1980.
[13]  “Military specification flight control systems—design, installation and test of piloted aircraft,” Tech. Rep. MIL-F-9490D, 1975.
[14]  Aircraft Control Toolbox User’s Guide, Princeton Satellite Systems, Princeton, NJ, USA, 2003.
[15]  B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation, New York, NY, USA, Wiley, 1992.
[16]  W. Blake, “AFRL/VACA,” Private Communication, 2004.
[17]  S. Srinathkumar, “Eigenvalue/eigenvector assignment using output feedback,” IEEE Transactions on Automatic Control, vol. 23, no. 1, pp. 79–81, 1978.
[18]  J. Kautsky, N. K. Nichols, and P. Van Dooren, “Robust pole assignment in linear state feedback,” International Journal of Control, vol. 41, no. 5, pp. 1129–1155, 1985.
[19]  T. R. Yechout, S. L. Morris, D. E. Bossert, and W. F. Hallgren, Introduction to Aircraft Flight Mechanics: Performance, Static Stability, Dynamic Stability, and Classical Feedback Control, AIAA Education Series, American Institute of Aeronautics and Astronautics, Reston, Va, USA, 2003.
[20]  G. Balas, R. Chiang, A. Packard, and M. Safonov, Robust Control Toolbox for use with MATLAB, The Mathworks, Inc., Natick, Mass, USA, 2006.
[21]  R. Pratt, Flight Control Systems: Practical Issues in Design and Implementation, The Institution of Electrical Engineers and The American Institute of Aeronautics and Astronautics, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133