全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

融合正向建模与反求计算的车用减振器建模技术研究

Keywords: 减振器 大挠度变形 正向建模 优化反求 遗传算法
shock absorber large deflection forward modeling optimized reverse genetic algorithm

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对减振器调试过程中工程师凭借经验调试耗时耗力等局限性,引入反求的思想,开展了结合减振器正向建模与关键参数计算反求的建模技术研究.根据有限元与最小二乘法结合的思想,建立基于大挠度变形的正向阻尼特性模型,并分析得出影响减振器工作特性的关键阀片参数;在减振器阻尼特性曲线的基础上,建立了以计算机模拟结果与试验结果的误差为目标函数,减振器阀片关键参数为待求参数的反求模型.最后采用遗传算法辨识出对阀片变形的关键参数,使优化反求后的参数模型能与试验特性良好吻合.论文提供的方法可以在减振器内部重要参数未知的情况下,对减振器进行参数优化设计,为调试减振器提供理论依据.
In view of the limitations that the tuning of shock absorber costs an engineer who depends on experience much time and strength, the thought of reverse solution was introduced, and then the forward modeling idea of shock absorber and reverse solution of key parameters were studied. Firstly, according to the thought of combining finite element analysis and least squares, a characteristic forward model based on large deflection was established. Furthermore, the obtained analysis results clearly identify some significant parameters which have a large impact on the process of the tuning of shock absorber. Based on the damping characteristic curve of shock absorber, the reverse model was established, which takes the errors between the simulation and test data as the objective function and takes the key parameters as the unknown parameters. Finally, some parameters of throttle-slices which are important to valve deflection were identified by using GA. The simulation results of parametric model after reversing agree well with the test data. This study provides a theoretical foundation for parameter optimization of shock absorber, in the case of the unknown important parameters of shock absorber. Meanwhile, this method provides a basis for the tuning of damper performance.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133