全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

超高层连体建筑风荷载干扰效应大涡模拟研究

Keywords: 超高层连体结构 数值风洞试验 大涡模拟 风荷载 干扰效应
ultra high-rise connecting buildings numerical wind tunnel simulation large eddy simulation wind load interference effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

超高层三塔连体建筑的主楼受到裙房及子楼的干扰作用显著,以某超高层三塔连体建筑为对象,基于LES(大涡模拟)方法对其进行了24个方向角下的数值风洞试验,并将主楼的体型系数与物理风洞试验结果进行了对比验证,再基于大涡模拟结果分别从平均和脉动风压特性、涡量分布以及干扰机理等方面探讨了超高层多塔连体建筑风荷载和干扰效应.结果表明:大涡模拟和风洞试验结果吻合较好;单体工况下主塔表面随机涡旋较密集、风压脉动较大、且尾流分离区域较小,当子塔处于主塔上游位置时对主塔结构抗风设计存在有利的“遮挡效应”,此时来流湍流对主塔风场分布起主导作用;当子塔处于主塔下游位置时会对主塔存在不利的风压放大作用,特征湍流作用更明显.
The main building of three-tower ultra high-rise connecting buildings is significantly interfered by the podiums and annexes. Large eddy simulation was adopted for three-tower ultra-high-rise connecting buildings. The shape coefficients of the main building were calculated, and the computational results were compared with the wind tunnel test results. The wind fields, wind pressure coefficients, and the interference effects between tall buildings were discussed. It is found that the large eddy simulation was a feasible way, and the turbulent wind velocity was higher in condition with single building. The field of flow separation is more lasting in condition with three buildings. The interference effect might have beneficial sheltering effect on the wind-induced vibration response of the main building when the main building was in the upstream. On the contrary, the wind pressure of main building might have been magnified when the main building was in the downstream.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133